DOI

The range of Arianta arbustorum is spreading eastwards across the Baltic Sea region. Because A. arbustorum is a common pest in agriculture and horticulture, understanding the origin and factors involved in the eastward range expansion of the land snail are important for future planning of species management. In the present study, we compared the genetic diversity of A. arbustorum in the recently established easternmost populations and across Europe using standard phylogeographic analyses on a mitochondrial marker (cytochrome c oxidase I). We also applied bioclimatic envelope modeling to determine the environmental factors responsible for the ongoing range shifts of A. arbustorum. The unique haplotype lineage was found in all Baltic Sea populations in contrast with the highly polymorphic populations from Central Europe and the Alps. The peripheral easternmost populations were fixed for the dominant haplotype of the Baltic lineage. Retrospective niche modeling confirmed previous assumptions of multiple glacial refugia of A. arbustorum in Europe. Our results also show that the emergence of new populations in the easternmost part of the A. arbustorum range and the presumptive loss of rear-edge populations in western Europe are most plausibly caused by ongoing climate change, which will have a remarkable effect on the future distribution of genetic diversity within the range of the copse snail.

Original languageEnglish
Pages (from-to)221-229
Number of pages9
JournalJournal of Zoological Systematics and Evolutionary Research
Volume58
Issue number1
DOIs
StatePublished - 1 Feb 2020
Externally publishedYes

    Research areas

  • bioclimatic modeling, climate change, mollusca, phylogeography, range extension

    Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Animal Science and Zoology
  • Molecular Biology
  • Genetics

ID: 75251201