Standard

Cooperative differential games with random duration. / Petrosyan, L. A.; Shevkoplyas, E. V.

In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, No. 4, 01.12.2000, p. 18-23.

Research output: Contribution to journalArticlepeer-review

Harvard

Petrosyan, LA & Shevkoplyas, EV 2000, 'Cooperative differential games with random duration', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, no. 4, pp. 18-23.

APA

Petrosyan, L. A., & Shevkoplyas, E. V. (2000). Cooperative differential games with random duration. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (4), 18-23.

Vancouver

Petrosyan LA, Shevkoplyas EV. Cooperative differential games with random duration. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2000 Dec 1;(4):18-23.

Author

Petrosyan, L. A. ; Shevkoplyas, E. V. / Cooperative differential games with random duration. In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2000 ; No. 4. pp. 18-23.

BibTeX

@article{a79ce641f10d4454a89e0c7e2b617f60,
title = "Cooperative differential games with random duration",
abstract = "For cooperative differential n-person games with random duration new optimality principles are introduced. They are based on using classical optimality principles for subgames occurring along the optimal trajectory. This new optimality principles are strongly time consistent. The formula for calculation of the distribution procedure of payoff is presented.",
author = "Petrosyan, {L. A.} and Shevkoplyas, {E. V.}",
year = "2000",
month = dec,
day = "1",
language = "русский",
pages = "18--23",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "4",

}

RIS

TY - JOUR

T1 - Cooperative differential games with random duration

AU - Petrosyan, L. A.

AU - Shevkoplyas, E. V.

PY - 2000/12/1

Y1 - 2000/12/1

N2 - For cooperative differential n-person games with random duration new optimality principles are introduced. They are based on using classical optimality principles for subgames occurring along the optimal trajectory. This new optimality principles are strongly time consistent. The formula for calculation of the distribution procedure of payoff is presented.

AB - For cooperative differential n-person games with random duration new optimality principles are introduced. They are based on using classical optimality principles for subgames occurring along the optimal trajectory. This new optimality principles are strongly time consistent. The formula for calculation of the distribution procedure of payoff is presented.

UR - http://www.scopus.com/inward/record.url?scp=0034588258&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:0034588258

SP - 18

EP - 23

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 4

ER -

ID: 36757894