Standard

Convergence Sets of Multidimensional Local Fields. / Madunts, A. I.

In: Journal of Mathematical Sciences (United States), Vol. 264, No. 1, 28.06.2022, p. 80-85.

Research output: Contribution to journalArticlepeer-review

Harvard

Madunts, AI 2022, 'Convergence Sets of Multidimensional Local Fields', Journal of Mathematical Sciences (United States), vol. 264, no. 1, pp. 80-85. https://doi.org/10.1007/s10958-022-05980-z

APA

Madunts, A. I. (2022). Convergence Sets of Multidimensional Local Fields. Journal of Mathematical Sciences (United States), 264(1), 80-85. https://doi.org/10.1007/s10958-022-05980-z

Vancouver

Madunts AI. Convergence Sets of Multidimensional Local Fields. Journal of Mathematical Sciences (United States). 2022 Jun 28;264(1):80-85. https://doi.org/10.1007/s10958-022-05980-z

Author

Madunts, A. I. / Convergence Sets of Multidimensional Local Fields. In: Journal of Mathematical Sciences (United States). 2022 ; Vol. 264, No. 1. pp. 80-85.

BibTeX

@article{96b100e4a6044e6583116f474e97f906,
title = "Convergence Sets of Multidimensional Local Fields",
abstract = "The paper is devoted to studying of subsets of multidimensional local fields such that any power series with coefficients from this subset converges when a maximal ideal element is substituted for a variable.",
author = "Madunts, {A. I.}",
note = "Publisher Copyright: {\textcopyright} 2022, Springer Science+Business Media, LLC, part of Springer Nature.",
year = "2022",
month = jun,
day = "28",
doi = "10.1007/s10958-022-05980-z",
language = "English",
volume = "264",
pages = "80--85",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Convergence Sets of Multidimensional Local Fields

AU - Madunts, A. I.

N1 - Publisher Copyright: © 2022, Springer Science+Business Media, LLC, part of Springer Nature.

PY - 2022/6/28

Y1 - 2022/6/28

N2 - The paper is devoted to studying of subsets of multidimensional local fields such that any power series with coefficients from this subset converges when a maximal ideal element is substituted for a variable.

AB - The paper is devoted to studying of subsets of multidimensional local fields such that any power series with coefficients from this subset converges when a maximal ideal element is substituted for a variable.

UR - http://www.scopus.com/inward/record.url?scp=85132948665&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/334e51cb-3321-3365-997c-9393b1769c65/

U2 - 10.1007/s10958-022-05980-z

DO - 10.1007/s10958-022-05980-z

M3 - Article

AN - SCOPUS:85132948665

VL - 264

SP - 80

EP - 85

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 1

ER -

ID: 97157016