We report herein a family of polynuclear complexes, [Au@Ag4(Py3P)4]X5 and [Au@Cu4(Py3P)4]X5 [X = NO3, ClO4, OTf, BF4, SbF6], containing unprecedented Au-centered Ag4 and Cu4 tetrahedral cores supported by tris(2-pyridyl)phosphine (Py3P) ligands. The [Au@Ag4]5+ clusters are synthesized via controlled substitution of the central Ag(I) ion in all-silver [Ag@Ag4]5+ precursors by the reaction with Au(tht)Cl, while the [Au@Cu4]5+ cluster is assembled through the treatment of a pre-organized [Au(Py3P)4]+ metallo-ligand with 4 equiv of a Cu(I) source. The structure of the Au@M4 clusters has been experimentally and theoretically investigated to reveal very weak intermolecular Au-M metallophilic interactions. At ambient temperature, the designed compounds emit a modest turquoise-to-yellow luminescence with microsecond lifetimes. Based on the temperature-dependent photophysical experiments and DFT/TD-DFT computations, the emission observed has been assigned to an MLCT or LLCT type depending on composition of the cluster core.

Original languageEnglish
Pages (from-to)10925-10933
Number of pages9
JournalInorganic Chemistry
Volume61
Issue number28
DOIs
StatePublished - 18 Jul 2022

    Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

ID: 97614153