Soils are an important component of polar ecosystems and play a key role in their functioning. They have a significant role in processes of accumulation, mobilization, redistribution of chemical, and especially, trace elements in landscapes and ecosystems. Both anthropogenic factors and climate change may affect biogeochemistry of soils in permafrost-affected landscapes, which are considered as highly sensitive to climate change and anthropogenic forcing. Involvement of additional portions of trace elements into the soils due to permafrost degradation and thawing is considered as one the main risk factors for natural environments in polar regions. Therefore, trace elements contents in soils of urban areas (Kharsaim, Aksarka, Salekhard, Harp and Labytnangi) and natural environments of the Yamal region (Ust'Uribey and Beliy island) were investigated. Soil samples from Kharp settlement show the highest content for Cu, Pb, Zn, Ni, connected with existing galvanizing plant “Kongor-chrome”. The highest values for Pb occur in soil samples from Aksarka and Labytnangi key plots. Soil samples from Kharsaim and Kharp key plots are characterized by the highest median values for Zn. Analysis of trace elements content show poorly manifested eluvial-illuvial differentiation of soil profiles of natural soils. The highest content for most of the studied trace elements has been revealed in topsoil horizons. Trace elements content in soil samples collected from urban environments ranged significantly high due to differences in the functional zones of the sites and a predominant anthropogenic source of trace elements additions. The results of statistical analysis show that statistically significant differences in Ni and Cu content in soils appear only between Kharp settlement and each of natural sites Ust'-Uribey and Beliy Island. Almost all studied urban soils reveal significant differences in Pb, Zn, As, and Fe contents between natural sites.

Translated title of the contributionСодержание тяжелых металлов в мерзлотных почвах Ямальского региона с различной функциональной нагрузкой
Original languageEnglish
Pages (from-to)125-133
Number of pages9
JournalPolarforschung
Volume88
Issue number2
DOIs
StateAccepted/In press - 2018

    Scopus subject areas

  • Oceanography

ID: 35801001