Promising photophysical properties and the enhanced sensitivity to molecular oxygen of porphyrins metalated with Gd(III) generate a need for their detailed description on an atomic level with the account of coordinated ligands, which also influence the properties. Herein, the complexation of tetraphenylporphyrin with gadolinium chloride in imidazole medium was analyzed using density functional theory in the framework of ωB97XD functional with hybrid diffused polarization-consistent basis sets. The complexes with different number of coordinated imidazole ligands (k = 0–2) were calculated to compare their structural parameters, electrostatic potential distribution, and interaction with molecular oxygen. Thermodynamic functions of complex formation were estimated for a set of possible reactions, including various side products (hydrogen chloride or imidazole hydrochloride) and different number of imidazole molecules involved. Weak interactions in the coordination sphere of chlorogadolinium tetraphenylporphyrin with attached imidazole ligands were also assessed. Performed analysis proved the presence of imidazole protection against the molecular oxygen attack.
Original languageEnglish
Article number4246
JournalMolecules (Basel, Switzerland)
Volume30
Issue number21
DOIs
StatePublished - 31 Oct 2025

    Research areas

  • DFT, ESP, dioxygen, gadolinium, imidazole, porphyrin

ID: 143365631