Research output: Contribution to journal › Article › peer-review
Computational Experiments with the Roots of Fibonacci-like Polynomials as a Window to Mathematics Research. / Abramovich, Sergei; Kuznetsov, Nikolay V.; Leonov, Gennady A.
In: Axioms, Vol. 11, No. 2, 48, 02.2022.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Computational Experiments with the Roots of Fibonacci-like Polynomials as a Window to Mathematics Research
AU - Abramovich, Sergei
AU - Kuznetsov, Nikolay V.
AU - Leonov, Gennady A.
N1 - Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2
Y1 - 2022/2
N2 - Fibonacci-like polynomials, the roots of which are responsible for a cyclic behavior of orbits of a second-order two-parametric difference equation, are considered. Using Maple andWolfram Alpha, the location of the largest and the smallest roots responsible for the cycles of period p among the roots responsible for the cycles of periods 2kp (period-doubling) and kp (period-multiplying) has been determined. These purely computational results of experimental mathematics, made possible by the use of modern digital tools, can be used as a motivation for confirmation through not-yet-developed methods of formal mathematics.
AB - Fibonacci-like polynomials, the roots of which are responsible for a cyclic behavior of orbits of a second-order two-parametric difference equation, are considered. Using Maple andWolfram Alpha, the location of the largest and the smallest roots responsible for the cycles of period p among the roots responsible for the cycles of periods 2kp (period-doubling) and kp (period-multiplying) has been determined. These purely computational results of experimental mathematics, made possible by the use of modern digital tools, can be used as a motivation for confirmation through not-yet-developed methods of formal mathematics.
KW - Computational experiments
KW - Cycles
KW - Fibonacci-like polynomials
KW - Generalized golden ratios
KW - Maple
KW - Wolfram Alpha
UR - http://www.scopus.com/inward/record.url?scp=85123897422&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/ff867ad6-de65-3aba-8d1e-8256375119ae/
U2 - 10.3390/axioms11020048
DO - 10.3390/axioms11020048
M3 - Article
AN - SCOPUS:85123897422
VL - 11
JO - Axioms
JF - Axioms
SN - 2075-1680
IS - 2
M1 - 48
ER -
ID: 95230641