Standard

Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics. / Maltsev, A.S.; Umarova, N.N.; Pashkova, G.V.; Mukhamedova, M.M.; Shergin, D.L.; Panchuk, V.V.; Kirsanov, D.O.; Demonterova, E.I.

In: Molecules, Vol. 28, No. 3, 1099, 21.01.2023.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Maltsev, A.S. ; Umarova, N.N. ; Pashkova, G.V. ; Mukhamedova, M.M. ; Shergin, D.L. ; Panchuk, V.V. ; Kirsanov, D.O. ; Demonterova, E.I. / Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics. In: Molecules. 2023 ; Vol. 28, No. 3.

BibTeX

@article{0f0cfb4993074bd390e55e3391581c00,
title = "Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics",
abstract = "The provenance study of archaeological materials is an important step in understanding the cultural and economic life of ancient human communities. One of the most popular approaches in provenance studies is to obtain the chemical composition of material and process it with chemometric methods. In this paper, we describe a combination of the total-reflection X-ray fluorescence (TXRF) method and chemometric techniques (PCA, k-means cluster analysis, and SVM) to study Neolithic ceramic samples from eastern Siberia (Baikal region). A database of ceramic samples was created and included 10 elements/indicators for classification by geographical origin and ornamentation type. This study shows that PCA cannot be used as the primary method for provenance purposes, but can show some patterns in the data. SVM and k-means cluster analysis classified most of the ceramic samples by archaeological site and type with high accuracy. The application of chemometric techniques also showed the similarity of some samples found at sites located close to each other. A database created and processed by SVM or k-means cluster analysis methods can be supplemented with new samples and automatically classified. {\textcopyright} 2023 by the authors.",
keywords = "archaeological ceramics, eastern Siberia, k-means cluster analysis, PCA, provenance, SVM, TXRF, article, ceramics, chemometric analysis, cluster analysis, human, Neolithic, Russian Federation, X ray fluorescence",
author = "A.S. Maltsev and N.N. Umarova and G.V. Pashkova and M.M. Mukhamedova and D.L. Shergin and V.V. Panchuk and D.O. Kirsanov and E.I. Demonterova",
note = "Цитирования:2 Export Date: 28 November 2023 CODEN: MOLEF Адрес для корреспонденции: Maltsev, A.S.; Institute of the Earth{\textquoteright}s Crust, 128 Lermontov St, Russian Federation; эл. почта: artemmaltsev1@gmail.com Сведения о финансировании: Russian Science Foundation, RSF, 19-78-10084 Текст о финансировании 1: This research was funded by the Russian Science Foundation, grant number 19-78-10084, https://rscf.ru/project/19-78-10084/ (accessed on 18 January 2023). Пристатейные ссылки: Tite, M.S., Ceramic production, provenance and use—A review (2008) Archaeometry, 50, pp. 216-231; Glascock, M.D., Compositional Analysis in Archaeology (2016) Online Only—Archaeology, , Oxford University Press, Oxford, UK; Hein, A., Tsolakidou, A., Iliopoulos, I., Mommsen, H., Buxeda i Garrig{\'o}s, J., Montana, G., Kilikoglou, V., Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: An inter laboratory calibration study (2002) Analyst, 127, pp. 542-553. , 12022656; De Vleeschouwer, F., Renson, V., Claeys, P., Nys, K., Bindler, R., Quantitative WD-XRF calibration for small ceramic samples and their source material (2011) Geoarchaeology, 26, pp. 440-450; Georgakopoulou, M., Hein, A., M{\"u}ller, N.S., Kiriatzi, E., Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics: WDXRF routine for archaeological ceramics analysis (2017) X-Ray Spectrom, 46, pp. 186-199; Speakman, R.J., Glascock, M.D., Acknowledging fifty years of neutron activation analysis in archaeology (2007) Archaeometry, 49, pp. 179-183; Wallis, N.J., Kamenov, G.D., Challenges in the Analysis of Heterogeneous Pottery by LA–ICP–MS: A Comparison with INAA (2013) Archaeometry, 55, pp. 893-909; Tsolakidou, A., Buxeda i Garrig{\'o}s, J., Kilikoglou, V., Assessment of dissolution techniques for the analysis of ceramic samples by plasma spectrometry (2002) Anal. Chim. Acta, 474, pp. 177-188; Vannoorenberghe, M., Teetaert, D., Goemaere, E., Van Acker, T., Belza, J., Meylemans, E., Vanhaecke, F., Cromb{\'e}, P., Complementarity of LA-ICP-MS and petrography in the analysis of Neolithic pottery from the Scheldt River valley, Belgium (2022) J. Archaeol. Sci. Rep, 42, p. 103413; Flewett, S., Saintenoy, T., Sepulveda, M., Fabian Mosso, E., Robles, C., Vega, K., Gutierrez, S., Maxey, E., Micro X-ray Fluorescence Study of Late Pre-Hispanic Ceramics from the Western Slopes of the South Central Andes Region in the Arica y Parinacota Region, Chile: A New Methodological Approach (2016) Appl. Spectrosc, 70, pp. 1759-1769; Andri{\'c}, V., Gaji{\'c}-Kva{\v s}{\v c}ev, M., Crkvenjakov, D.K., Mari{\'c}-Stojanovi{\'c}, M., Gad{\v z}uri{\'c}, S., Evaluation of Pattern Recognition Techniques for the Attribution of Cultural Heritage Objects Based on the Qualitative XRF Data (2021) Microchem. J, 167, p. 106267; Odelli, E., Palleschi, V., Legnaioli, S., Cantini, F., Raneri, S., Graph Clustering and Portable X-Ray Fluorescence: An Application for in Situ, Fast and Preliminary Classification of Transport Amphoras (2020) Spectrochim. Acta Part B At. Spectrosc, 172, p. 105966; Emmitt, J.J., McAlister, A.J., Phillipps, R.S., Holdaway, S.J., Sourcing without Sources: Measuring Ceramic Variability with PXRF (2018) J. Archaeol. Sci. Rep, 17, pp. 422-432; Fornacelli, C., Volpi, V., Ponta, E., Russo, L., Briano, A., Donati, A., Giamello, M., Bianchi, G., Grouping Ceramic Variability with PXRF for Pottery Trade and Trends in Early Medieval Southern Tuscany. Preliminary Results from the Vetricella Case Study (Grosseto, Italy) (2021) Appl. Sci, 11; Braekmans, D., Boschloos, V., Hameeuw, H., Van der Perre, A., Tracing the Provenance of Unfired Ancient Egyptian Clay Figurines from Saqqara through Non-Destructive X-Ray Fluorescence Spectrometry (2019) Microchem. J, 145, pp. 1207-1217; Panchuk, V., Yaroshenko, I., Legin, A., Semenov, V., Kirsanov, D., Application of Chemometric Methods to XRF-Data—A Tutorial Review (2018) Anal. Chim. Acta, 1040, pp. 19-32; Barone, G., Mazzoleni, P., Spagnolo, G.V., Raneri, S., Artificial Neural Network for the Provenance Study of Archaeological Ceramics Using Clay Sediment Database (2019) J. Cult. Herit, 38, pp. 147-157; Calparsoro, E., Maguregui, M., Morillas, H., Arana, G., I{\~n}a{\~n}ez, J.G., Non-Destructive Screening Methodology Based on ED-XRF for the Classification of Medieval and Post-Medieval Archaeological Ceramics (2019) Ceram. Int, 45, pp. 10672-10683; Anglisano, A., Casas, L., Anglisano, M., Queralt, I., Application of Supervised Machine-Learning Methods for Attesting Provenance in Catalan Traditional Pottery Industry (2019) Minerals, 10; Seetha, D., Velraj, G., Spectroscopic and Statistical Approach of Archaeological Artifacts Recently Excavated from Tamilnadu, South India (2015) Spectrochim. Acta Part A Mol. Biomol. Spectrosc, 149, pp. 59-68; Seetha, D., Velraj, G., FT-IR, XRD, SEM-EDS, EDXRF and Chemometric Analyses of Archaeological Artifacts Recently Excavated from Chandravalli in Karnataka State, South India (2019) Radiat. Phys. Chem, 162, pp. 114-120; Araujo, C.S., Appoloni, C.R., Ikeoka, R.A., Symanski, L.C.P., Study of Ceramics from Brazilian Slave Quarters of the XVIII and XIX Centuries by EDXRF and Multivariate Analysis (2023) Appl. Radiat. Isot, 191, p. 110560. , 36434863; Papachristodoulou, C., Gravani, K., Oikonomou, A., Ioannides, K., On the Provenance and Manufacture of Red-Slipped Fine Ware from Ancient Cassope (NW Greece): Evidence by X-Ray Analytical Methods (2010) J. Archaeol. Sci, 37, pp. 2146-2154; Fern{\'a}ndez-Ruiz, R., Garcia-Heras, M., Analysis of Archaeological Ceramics by Total-Reflection X-Ray Fluorescence: Quantitative Approaches (2008) Spectrochim. Acta Part B At. Spectrosc, 63, pp. 975-979; Fern{\'a}ndez-Ruiz, R., Garc{\'i}a-Heras, M., Study of Archaeological Ceramics by Total-Reflection X-Ray Fluorescence Spectrometry: Semi-Quantitative Approach (2007) Spectrochim. Acta Part B At. Spectrosc, 62, pp. 1123-1129; Garc{\'i}a-Heras, M., Fern{\'a}ndez-Ruiz, R., Tornero, J.D., Analysis of archaeological ceramics by TXRF and contrasted with NAA (1997) J. Archaeol. Sci, 24, pp. 1003-1014; Cariati, F., Fermo, P., Gilardoni, S., Galli, A., Milazzo, M., A new approach for archaeological ceramics analysis using total reflection X-ray fluorescence spectrometry (2003) Spectrochim. Acta Part B At. Spectrosc, 58, pp. 177-184; Horcajada, P., Rold{\'a}n, C., Vidal, C., Rodenas, I., Carballo, J., Murcia, S., Juanes, D., Archaeometric study of ceramic figurines from the Maya settlement of La Blanca (Pet{\'e}n, Guatemala) (2015) Radiat. Phys. Chem, 97, pp. 275-283; Szczerbowska-Boruchowska, M., Surowka, A.D., Ostachowicz, B., Piana, K., Spaleniak, A., Wrobel, P., Dudala, J., Ziomber-Lisiak, A., Combined Spectroscopic, Biochemical and Chemometric Approach toward Finding of Biochemical Markers of Obesity (2023) Biochim. Biophys. Acta-Gen. Subj, 1867, p. 130279; Allegretta, I., Squeo, G., Gattullo, C.E., Porfido, C., Cicchetti, A., Caponio, F., Cesco, S., Terzano, R., TXRF Spectral Information Enhanced by Multivariate Analysis: A New Strategy for Food Fingerprint (2023) Food Chem, 401, p. 134124; Vitali {\v C}epo, D., Karoglan, M., Borgese, L., Depero, L.E., Margu{\'i}, E., Jablan, J., Application of Benchtop Total-Reflection X-Ray Fluorescence Spectrometry and Chemometrics in Classification of Origin and Type of Croatian Wines (2022) Food Chem. X, 13, p. 100209; Ferreira, L., Nascentes, C., Vallad{\~a}o, F., Lordeiro, R., Feasibility of a New Method for Identification and Discrimination of Gunshot Residues by Total Reflection X-Ray Fluorescence and Principal Component Analysis (2019) J. Braz. Chem. Soc, 30, pp. 2582-2589; Duarte, B., Mamede, R., Carreiras, J., Duarte, I.A., Ca{\c c}ador, I., Reis-Santos, P., Vasconcelos, R.P., Tanner, S.E., Harnessing the Full Power of Chemometric-Based Analysis of Total Reflection X-Ray Fluorescence Spectral Data to Boost the Identification of Seafood Provenance and Fishing Areas (2022) Foods, 11. , 36076884; Duarte, B., Mamede, R., Duarte, I.A., Ca{\c c}ador, I., Tanner, S.E., Silva, M., Jacinto, D., Fonseca, V.F., Elemental Chemometrics as Tools to Depict Stalked Barnacle (Pollicipes Pollicipes) Harvest Locations and Food Safety (2022) Molecules, 27. , 35209085; Maltsev, A.S., Pashkova, G.V., Fern{\'a}ndez-Ruiz, R., Demonterova, E.I., Shuliumova, A.N., Umarova, N.N., Shergin, D.L., Mikheeva, E.A., Characterization of Archaeological Ceramics from Eastern Siberia by Total-Reflection X-Ray Fluorescence Spectrometry and Principal Component Analysis (2021) Spectrochim. Acta Part B At. Spectrosc, 175, p. 106012; Bro, R., Smilde, A.K., Principal component analysis (2014) Anal. Methods, 6, pp. 2812-2831; Klockenk{\"a}mper, R., von Bohlen, A., (2015) Total-Reflection X-ray Fluorescence Analysis and Related Methods, , 2nd ed., John Wiley and Sons, Inc., Hoboken, NJ, USA; Pashkova, G., Statkus, M., Mukhamedova, M., Finkelshtein, A., Abdrashitova, I., Belozerova, O., Chubarov, V., Demonterova, E., A Workflow for Uncertainty Assessment in Elemental Analysis of Archaeological Ceramics (2022) SSRN Electron. J",
year = "2023",
month = jan,
day = "21",
doi = "10.3390/molecules28031099",
language = "Английский",
volume = "28",
journal = "Molecules",
issn = "1420-3049",
publisher = "MDPI AG",
number = "3",

}

RIS

TY - JOUR

T1 - Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics

AU - Maltsev, A.S.

AU - Umarova, N.N.

AU - Pashkova, G.V.

AU - Mukhamedova, M.M.

AU - Shergin, D.L.

AU - Panchuk, V.V.

AU - Kirsanov, D.O.

AU - Demonterova, E.I.

N1 - Цитирования:2 Export Date: 28 November 2023 CODEN: MOLEF Адрес для корреспонденции: Maltsev, A.S.; Institute of the Earth’s Crust, 128 Lermontov St, Russian Federation; эл. почта: artemmaltsev1@gmail.com Сведения о финансировании: Russian Science Foundation, RSF, 19-78-10084 Текст о финансировании 1: This research was funded by the Russian Science Foundation, grant number 19-78-10084, https://rscf.ru/project/19-78-10084/ (accessed on 18 January 2023). Пристатейные ссылки: Tite, M.S., Ceramic production, provenance and use—A review (2008) Archaeometry, 50, pp. 216-231; Glascock, M.D., Compositional Analysis in Archaeology (2016) Online Only—Archaeology, , Oxford University Press, Oxford, UK; Hein, A., Tsolakidou, A., Iliopoulos, I., Mommsen, H., Buxeda i Garrigós, J., Montana, G., Kilikoglou, V., Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: An inter laboratory calibration study (2002) Analyst, 127, pp. 542-553. , 12022656; De Vleeschouwer, F., Renson, V., Claeys, P., Nys, K., Bindler, R., Quantitative WD-XRF calibration for small ceramic samples and their source material (2011) Geoarchaeology, 26, pp. 440-450; Georgakopoulou, M., Hein, A., Müller, N.S., Kiriatzi, E., Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics: WDXRF routine for archaeological ceramics analysis (2017) X-Ray Spectrom, 46, pp. 186-199; Speakman, R.J., Glascock, M.D., Acknowledging fifty years of neutron activation analysis in archaeology (2007) Archaeometry, 49, pp. 179-183; Wallis, N.J., Kamenov, G.D., Challenges in the Analysis of Heterogeneous Pottery by LA–ICP–MS: A Comparison with INAA (2013) Archaeometry, 55, pp. 893-909; Tsolakidou, A., Buxeda i Garrigós, J., Kilikoglou, V., Assessment of dissolution techniques for the analysis of ceramic samples by plasma spectrometry (2002) Anal. Chim. Acta, 474, pp. 177-188; Vannoorenberghe, M., Teetaert, D., Goemaere, E., Van Acker, T., Belza, J., Meylemans, E., Vanhaecke, F., Crombé, P., Complementarity of LA-ICP-MS and petrography in the analysis of Neolithic pottery from the Scheldt River valley, Belgium (2022) J. Archaeol. Sci. Rep, 42, p. 103413; Flewett, S., Saintenoy, T., Sepulveda, M., Fabian Mosso, E., Robles, C., Vega, K., Gutierrez, S., Maxey, E., Micro X-ray Fluorescence Study of Late Pre-Hispanic Ceramics from the Western Slopes of the South Central Andes Region in the Arica y Parinacota Region, Chile: A New Methodological Approach (2016) Appl. Spectrosc, 70, pp. 1759-1769; Andrić, V., Gajić-Kvaščev, M., Crkvenjakov, D.K., Marić-Stojanović, M., Gadžurić, S., Evaluation of Pattern Recognition Techniques for the Attribution of Cultural Heritage Objects Based on the Qualitative XRF Data (2021) Microchem. J, 167, p. 106267; Odelli, E., Palleschi, V., Legnaioli, S., Cantini, F., Raneri, S., Graph Clustering and Portable X-Ray Fluorescence: An Application for in Situ, Fast and Preliminary Classification of Transport Amphoras (2020) Spectrochim. Acta Part B At. Spectrosc, 172, p. 105966; Emmitt, J.J., McAlister, A.J., Phillipps, R.S., Holdaway, S.J., Sourcing without Sources: Measuring Ceramic Variability with PXRF (2018) J. Archaeol. Sci. Rep, 17, pp. 422-432; Fornacelli, C., Volpi, V., Ponta, E., Russo, L., Briano, A., Donati, A., Giamello, M., Bianchi, G., Grouping Ceramic Variability with PXRF for Pottery Trade and Trends in Early Medieval Southern Tuscany. Preliminary Results from the Vetricella Case Study (Grosseto, Italy) (2021) Appl. Sci, 11; Braekmans, D., Boschloos, V., Hameeuw, H., Van der Perre, A., Tracing the Provenance of Unfired Ancient Egyptian Clay Figurines from Saqqara through Non-Destructive X-Ray Fluorescence Spectrometry (2019) Microchem. J, 145, pp. 1207-1217; Panchuk, V., Yaroshenko, I., Legin, A., Semenov, V., Kirsanov, D., Application of Chemometric Methods to XRF-Data—A Tutorial Review (2018) Anal. Chim. Acta, 1040, pp. 19-32; Barone, G., Mazzoleni, P., Spagnolo, G.V., Raneri, S., Artificial Neural Network for the Provenance Study of Archaeological Ceramics Using Clay Sediment Database (2019) J. Cult. Herit, 38, pp. 147-157; Calparsoro, E., Maguregui, M., Morillas, H., Arana, G., Iñañez, J.G., Non-Destructive Screening Methodology Based on ED-XRF for the Classification of Medieval and Post-Medieval Archaeological Ceramics (2019) Ceram. Int, 45, pp. 10672-10683; Anglisano, A., Casas, L., Anglisano, M., Queralt, I., Application of Supervised Machine-Learning Methods for Attesting Provenance in Catalan Traditional Pottery Industry (2019) Minerals, 10; Seetha, D., Velraj, G., Spectroscopic and Statistical Approach of Archaeological Artifacts Recently Excavated from Tamilnadu, South India (2015) Spectrochim. Acta Part A Mol. Biomol. Spectrosc, 149, pp. 59-68; Seetha, D., Velraj, G., FT-IR, XRD, SEM-EDS, EDXRF and Chemometric Analyses of Archaeological Artifacts Recently Excavated from Chandravalli in Karnataka State, South India (2019) Radiat. Phys. Chem, 162, pp. 114-120; Araujo, C.S., Appoloni, C.R., Ikeoka, R.A., Symanski, L.C.P., Study of Ceramics from Brazilian Slave Quarters of the XVIII and XIX Centuries by EDXRF and Multivariate Analysis (2023) Appl. Radiat. Isot, 191, p. 110560. , 36434863; Papachristodoulou, C., Gravani, K., Oikonomou, A., Ioannides, K., On the Provenance and Manufacture of Red-Slipped Fine Ware from Ancient Cassope (NW Greece): Evidence by X-Ray Analytical Methods (2010) J. Archaeol. Sci, 37, pp. 2146-2154; Fernández-Ruiz, R., Garcia-Heras, M., Analysis of Archaeological Ceramics by Total-Reflection X-Ray Fluorescence: Quantitative Approaches (2008) Spectrochim. Acta Part B At. Spectrosc, 63, pp. 975-979; Fernández-Ruiz, R., García-Heras, M., Study of Archaeological Ceramics by Total-Reflection X-Ray Fluorescence Spectrometry: Semi-Quantitative Approach (2007) Spectrochim. Acta Part B At. Spectrosc, 62, pp. 1123-1129; García-Heras, M., Fernández-Ruiz, R., Tornero, J.D., Analysis of archaeological ceramics by TXRF and contrasted with NAA (1997) J. Archaeol. Sci, 24, pp. 1003-1014; Cariati, F., Fermo, P., Gilardoni, S., Galli, A., Milazzo, M., A new approach for archaeological ceramics analysis using total reflection X-ray fluorescence spectrometry (2003) Spectrochim. Acta Part B At. Spectrosc, 58, pp. 177-184; Horcajada, P., Roldán, C., Vidal, C., Rodenas, I., Carballo, J., Murcia, S., Juanes, D., Archaeometric study of ceramic figurines from the Maya settlement of La Blanca (Petén, Guatemala) (2015) Radiat. Phys. Chem, 97, pp. 275-283; Szczerbowska-Boruchowska, M., Surowka, A.D., Ostachowicz, B., Piana, K., Spaleniak, A., Wrobel, P., Dudala, J., Ziomber-Lisiak, A., Combined Spectroscopic, Biochemical and Chemometric Approach toward Finding of Biochemical Markers of Obesity (2023) Biochim. Biophys. Acta-Gen. Subj, 1867, p. 130279; Allegretta, I., Squeo, G., Gattullo, C.E., Porfido, C., Cicchetti, A., Caponio, F., Cesco, S., Terzano, R., TXRF Spectral Information Enhanced by Multivariate Analysis: A New Strategy for Food Fingerprint (2023) Food Chem, 401, p. 134124; Vitali Čepo, D., Karoglan, M., Borgese, L., Depero, L.E., Marguí, E., Jablan, J., Application of Benchtop Total-Reflection X-Ray Fluorescence Spectrometry and Chemometrics in Classification of Origin and Type of Croatian Wines (2022) Food Chem. X, 13, p. 100209; Ferreira, L., Nascentes, C., Valladão, F., Lordeiro, R., Feasibility of a New Method for Identification and Discrimination of Gunshot Residues by Total Reflection X-Ray Fluorescence and Principal Component Analysis (2019) J. Braz. Chem. Soc, 30, pp. 2582-2589; Duarte, B., Mamede, R., Carreiras, J., Duarte, I.A., Caçador, I., Reis-Santos, P., Vasconcelos, R.P., Tanner, S.E., Harnessing the Full Power of Chemometric-Based Analysis of Total Reflection X-Ray Fluorescence Spectral Data to Boost the Identification of Seafood Provenance and Fishing Areas (2022) Foods, 11. , 36076884; Duarte, B., Mamede, R., Duarte, I.A., Caçador, I., Tanner, S.E., Silva, M., Jacinto, D., Fonseca, V.F., Elemental Chemometrics as Tools to Depict Stalked Barnacle (Pollicipes Pollicipes) Harvest Locations and Food Safety (2022) Molecules, 27. , 35209085; Maltsev, A.S., Pashkova, G.V., Fernández-Ruiz, R., Demonterova, E.I., Shuliumova, A.N., Umarova, N.N., Shergin, D.L., Mikheeva, E.A., Characterization of Archaeological Ceramics from Eastern Siberia by Total-Reflection X-Ray Fluorescence Spectrometry and Principal Component Analysis (2021) Spectrochim. Acta Part B At. Spectrosc, 175, p. 106012; Bro, R., Smilde, A.K., Principal component analysis (2014) Anal. Methods, 6, pp. 2812-2831; Klockenkämper, R., von Bohlen, A., (2015) Total-Reflection X-ray Fluorescence Analysis and Related Methods, , 2nd ed., John Wiley and Sons, Inc., Hoboken, NJ, USA; Pashkova, G., Statkus, M., Mukhamedova, M., Finkelshtein, A., Abdrashitova, I., Belozerova, O., Chubarov, V., Demonterova, E., A Workflow for Uncertainty Assessment in Elemental Analysis of Archaeological Ceramics (2022) SSRN Electron. J

PY - 2023/1/21

Y1 - 2023/1/21

N2 - The provenance study of archaeological materials is an important step in understanding the cultural and economic life of ancient human communities. One of the most popular approaches in provenance studies is to obtain the chemical composition of material and process it with chemometric methods. In this paper, we describe a combination of the total-reflection X-ray fluorescence (TXRF) method and chemometric techniques (PCA, k-means cluster analysis, and SVM) to study Neolithic ceramic samples from eastern Siberia (Baikal region). A database of ceramic samples was created and included 10 elements/indicators for classification by geographical origin and ornamentation type. This study shows that PCA cannot be used as the primary method for provenance purposes, but can show some patterns in the data. SVM and k-means cluster analysis classified most of the ceramic samples by archaeological site and type with high accuracy. The application of chemometric techniques also showed the similarity of some samples found at sites located close to each other. A database created and processed by SVM or k-means cluster analysis methods can be supplemented with new samples and automatically classified. © 2023 by the authors.

AB - The provenance study of archaeological materials is an important step in understanding the cultural and economic life of ancient human communities. One of the most popular approaches in provenance studies is to obtain the chemical composition of material and process it with chemometric methods. In this paper, we describe a combination of the total-reflection X-ray fluorescence (TXRF) method and chemometric techniques (PCA, k-means cluster analysis, and SVM) to study Neolithic ceramic samples from eastern Siberia (Baikal region). A database of ceramic samples was created and included 10 elements/indicators for classification by geographical origin and ornamentation type. This study shows that PCA cannot be used as the primary method for provenance purposes, but can show some patterns in the data. SVM and k-means cluster analysis classified most of the ceramic samples by archaeological site and type with high accuracy. The application of chemometric techniques also showed the similarity of some samples found at sites located close to each other. A database created and processed by SVM or k-means cluster analysis methods can be supplemented with new samples and automatically classified. © 2023 by the authors.

KW - archaeological ceramics

KW - eastern Siberia

KW - k-means cluster analysis

KW - PCA

KW - provenance

KW - SVM

KW - TXRF

KW - article

KW - ceramics

KW - chemometric analysis

KW - cluster analysis

KW - human

KW - Neolithic

KW - Russian Federation

KW - X ray fluorescence

UR - https://www.mendeley.com/catalogue/6aec1ff5-9b4a-3309-932a-fadb6c9700b5/

U2 - 10.3390/molecules28031099

DO - 10.3390/molecules28031099

M3 - статья

C2 - 36770765

VL - 28

JO - Molecules

JF - Molecules

SN - 1420-3049

IS - 3

M1 - 1099

ER -

ID: 114407942