Standard

Cluster flows and multiagent technology. / Granichin, Oleg; Uzhva, Denis; Volkovich, Zeev.

In: Mathematics, Vol. 9, No. 1, 22, 01.01.2021, p. 1-14.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Granichin, Oleg ; Uzhva, Denis ; Volkovich, Zeev. / Cluster flows and multiagent technology. In: Mathematics. 2021 ; Vol. 9, No. 1. pp. 1-14.

BibTeX

@article{965c10d73472495a966a1ff348a7b8ad,
title = "Cluster flows and multiagent technology",
abstract = "Multiagent technologies provide a new way for studying and controlling complex systems. Local interactions between agents often lead to group synchronization, also known as clusterization (or clustering), which is usually a more rapid process in comparison with relatively slow changes in external environment. Usually, the goal of system control is defined by the behavior of a system on long time intervals. As is well known, a clustering procedure is generally much faster than the process of changing in the surrounding (system) environment. In this case, as a rule, the control objectives are determined by the behavior of the system at large time intervals. If the considered time interval is much larger than the time during which the clusters are formed, then the formed clusters can be considered to be “new variables” in the “slow” time model. Such variables are called “mesoscopic” because their scale is between the level of the entire system (macro-level) and the level of individual agents (micro-level). Detailed models of complex systems that consist of a large number of elementary components (miniature agents) are very difficult to control due to technological barriers and the colossal complexity of tasks due to their enormous dimension. At the level of elementary components of systems, in many applications it is impossible to verify the models of the agent dynamics with the traditionally high degree of accuracy, due to their miniaturization and high frequency of control actions. The use of new mesoscopic variables can make it possible to synthesize fewer different control inputs than when considering the system as a collection of a large number of agents, since such inputs will be common for entire clusters. In order to implement this idea, the “clusters flow” framework was formalized and used to analyze the Kuramoto model as an attracting example of a complex nonlinear networked system with the effects of opportunities for the emergence of clusters. It is shown that clustering leads to a sparse representation of the dynamic trajectories of the system, which makes it possible to apply the method of compressive sensing in order to obtain the dynamic characteristics of the formed clusters. The essence of the method is as follows. With the dimension N of the total state space of the entire system and the a priori assignment of the upper bound for the number of clusters s, only m integral randomized observations of the general state vector of the entire large system are formed, where m is proportional to the number s that is multiplied by logarithm N/s. A two-stage observation algorithm is proposed: first, the state space is limited and discretized, and compression then occurs directly, according to which reconstruction is then performed, which makes it possible to obtain the integral characteristics of the clusters. Based on these obtained characteristics, further, it is possible to synthesize mesocontrols for each cluster while using general model predictive control methods in a space of dimension no more than s for a given control goal, while taking the constraints obtained on the controls into account. In the current work, we focus on a centralized strategy of observations, leaving possible decentralized approaches for the future research. The performance of the new framework is illustrated with examples of simulation modeling.",
keywords = "Cluster flows, Data compression, Mesoscopic observations",
author = "Oleg Granichin and Denis Uzhva and Zeev Volkovich",
note = "Funding Information: Funding: This work was supported by Russian Science Foundation (project 16-19-00057, IPME RAS). Funding Information: Acknowledgments: The authors extend their appreciation to the Russian Science Foundation for funding this work (project 16-19-00057, IPME RAS). Publisher Copyright: {\textcopyright} 2020 by the authors. Licensee MDPI, Basel, Switzerland. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2021",
month = jan,
day = "1",
doi = "10.3390/math9010022",
language = "English",
volume = "9",
pages = "1--14",
journal = "Mathematics",
issn = "2227-7390",
publisher = "MDPI AG",
number = "1",

}

RIS

TY - JOUR

T1 - Cluster flows and multiagent technology

AU - Granichin, Oleg

AU - Uzhva, Denis

AU - Volkovich, Zeev

N1 - Funding Information: Funding: This work was supported by Russian Science Foundation (project 16-19-00057, IPME RAS). Funding Information: Acknowledgments: The authors extend their appreciation to the Russian Science Foundation for funding this work (project 16-19-00057, IPME RAS). Publisher Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2021/1/1

Y1 - 2021/1/1

N2 - Multiagent technologies provide a new way for studying and controlling complex systems. Local interactions between agents often lead to group synchronization, also known as clusterization (or clustering), which is usually a more rapid process in comparison with relatively slow changes in external environment. Usually, the goal of system control is defined by the behavior of a system on long time intervals. As is well known, a clustering procedure is generally much faster than the process of changing in the surrounding (system) environment. In this case, as a rule, the control objectives are determined by the behavior of the system at large time intervals. If the considered time interval is much larger than the time during which the clusters are formed, then the formed clusters can be considered to be “new variables” in the “slow” time model. Such variables are called “mesoscopic” because their scale is between the level of the entire system (macro-level) and the level of individual agents (micro-level). Detailed models of complex systems that consist of a large number of elementary components (miniature agents) are very difficult to control due to technological barriers and the colossal complexity of tasks due to their enormous dimension. At the level of elementary components of systems, in many applications it is impossible to verify the models of the agent dynamics with the traditionally high degree of accuracy, due to their miniaturization and high frequency of control actions. The use of new mesoscopic variables can make it possible to synthesize fewer different control inputs than when considering the system as a collection of a large number of agents, since such inputs will be common for entire clusters. In order to implement this idea, the “clusters flow” framework was formalized and used to analyze the Kuramoto model as an attracting example of a complex nonlinear networked system with the effects of opportunities for the emergence of clusters. It is shown that clustering leads to a sparse representation of the dynamic trajectories of the system, which makes it possible to apply the method of compressive sensing in order to obtain the dynamic characteristics of the formed clusters. The essence of the method is as follows. With the dimension N of the total state space of the entire system and the a priori assignment of the upper bound for the number of clusters s, only m integral randomized observations of the general state vector of the entire large system are formed, where m is proportional to the number s that is multiplied by logarithm N/s. A two-stage observation algorithm is proposed: first, the state space is limited and discretized, and compression then occurs directly, according to which reconstruction is then performed, which makes it possible to obtain the integral characteristics of the clusters. Based on these obtained characteristics, further, it is possible to synthesize mesocontrols for each cluster while using general model predictive control methods in a space of dimension no more than s for a given control goal, while taking the constraints obtained on the controls into account. In the current work, we focus on a centralized strategy of observations, leaving possible decentralized approaches for the future research. The performance of the new framework is illustrated with examples of simulation modeling.

AB - Multiagent technologies provide a new way for studying and controlling complex systems. Local interactions between agents often lead to group synchronization, also known as clusterization (or clustering), which is usually a more rapid process in comparison with relatively slow changes in external environment. Usually, the goal of system control is defined by the behavior of a system on long time intervals. As is well known, a clustering procedure is generally much faster than the process of changing in the surrounding (system) environment. In this case, as a rule, the control objectives are determined by the behavior of the system at large time intervals. If the considered time interval is much larger than the time during which the clusters are formed, then the formed clusters can be considered to be “new variables” in the “slow” time model. Such variables are called “mesoscopic” because their scale is between the level of the entire system (macro-level) and the level of individual agents (micro-level). Detailed models of complex systems that consist of a large number of elementary components (miniature agents) are very difficult to control due to technological barriers and the colossal complexity of tasks due to their enormous dimension. At the level of elementary components of systems, in many applications it is impossible to verify the models of the agent dynamics with the traditionally high degree of accuracy, due to their miniaturization and high frequency of control actions. The use of new mesoscopic variables can make it possible to synthesize fewer different control inputs than when considering the system as a collection of a large number of agents, since such inputs will be common for entire clusters. In order to implement this idea, the “clusters flow” framework was formalized and used to analyze the Kuramoto model as an attracting example of a complex nonlinear networked system with the effects of opportunities for the emergence of clusters. It is shown that clustering leads to a sparse representation of the dynamic trajectories of the system, which makes it possible to apply the method of compressive sensing in order to obtain the dynamic characteristics of the formed clusters. The essence of the method is as follows. With the dimension N of the total state space of the entire system and the a priori assignment of the upper bound for the number of clusters s, only m integral randomized observations of the general state vector of the entire large system are formed, where m is proportional to the number s that is multiplied by logarithm N/s. A two-stage observation algorithm is proposed: first, the state space is limited and discretized, and compression then occurs directly, according to which reconstruction is then performed, which makes it possible to obtain the integral characteristics of the clusters. Based on these obtained characteristics, further, it is possible to synthesize mesocontrols for each cluster while using general model predictive control methods in a space of dimension no more than s for a given control goal, while taking the constraints obtained on the controls into account. In the current work, we focus on a centralized strategy of observations, leaving possible decentralized approaches for the future research. The performance of the new framework is illustrated with examples of simulation modeling.

KW - Cluster flows

KW - Data compression

KW - Mesoscopic observations

UR - http://www.scopus.com/inward/record.url?scp=85099257187&partnerID=8YFLogxK

U2 - 10.3390/math9010022

DO - 10.3390/math9010022

M3 - Article

AN - SCOPUS:85099257187

VL - 9

SP - 1

EP - 14

JO - Mathematics

JF - Mathematics

SN - 2227-7390

IS - 1

M1 - 22

ER -

ID: 73207001