Research output: Contribution to journal › Article › peer-review
Classification of finite factor representations of the (2m + 1) -dimensional Heisenberg group over a countable field of finite characteristic. / Kokhaś, K. P.
In: Functional Analysis and its Applications, Vol. 36, No. 3, 01.12.2002, p. 236-239.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Classification of finite factor representations of the (2m + 1) -dimensional Heisenberg group over a countable field of finite characteristic
AU - Kokhaś, K. P.
PY - 2002/12/1
Y1 - 2002/12/1
N2 - For a field F that is the direct limit of an increasing chain of finite fields, we describe the Bratteli diagram, the finite complex factor representations, the Plancherel formula, and the projective modules of the corresponding Heisenberg group.
AB - For a field F that is the direct limit of an increasing chain of finite fields, we describe the Bratteli diagram, the finite complex factor representations, the Plancherel formula, and the projective modules of the corresponding Heisenberg group.
KW - Factor representation
KW - Grothendieck group
KW - Heisenberg group
KW - Nilpotent group
UR - http://www.scopus.com/inward/record.url?scp=0036373989&partnerID=8YFLogxK
U2 - 10.1023/A:1020162424581
DO - 10.1023/A:1020162424581
M3 - Article
AN - SCOPUS:0036373989
VL - 36
SP - 236
EP - 239
JO - Functional Analysis and its Applications
JF - Functional Analysis and its Applications
SN - 0016-2663
IS - 3
ER -
ID: 52478146