Standard

Clarke subdifferential of the difference of maximum functions. / Polyakova, L. N.

In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, No. 3, 01.07.1996, p. 121-123.

Research output: Contribution to journalArticlepeer-review

Harvard

Polyakova, LN 1996, 'Clarke subdifferential of the difference of maximum functions', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, no. 3, pp. 121-123.

APA

Polyakova, L. N. (1996). Clarke subdifferential of the difference of maximum functions. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (3), 121-123.

Vancouver

Polyakova LN. Clarke subdifferential of the difference of maximum functions. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1996 Jul 1;(3):121-123.

Author

Polyakova, L. N. / Clarke subdifferential of the difference of maximum functions. In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1996 ; No. 3. pp. 121-123.

BibTeX

@article{682f4d04045b4637b9d958d269aa9b77,
title = "Clarke subdifferential of the difference of maximum functions",
abstract = "The concepts of the generalized derivative on direction, the subdifferential and the Clarke subdifferential have been introduced for locally Lipschitz functions. The locally Lipschitz function has been the difference of maximum functions from finite numbers of continuously differentiable functions. The main formulas for Clarke subdifferential calculus have been presented in the form of inclusions. The condition when the Clarke subdifferential has been equal to the difference of Clarke subdifferentials has been defined for locally Lipschitz functions.",
author = "Polyakova, {L. N.}",
year = "1996",
month = jul,
day = "1",
language = "русский",
pages = "121--123",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "3",

}

RIS

TY - JOUR

T1 - Clarke subdifferential of the difference of maximum functions

AU - Polyakova, L. N.

PY - 1996/7/1

Y1 - 1996/7/1

N2 - The concepts of the generalized derivative on direction, the subdifferential and the Clarke subdifferential have been introduced for locally Lipschitz functions. The locally Lipschitz function has been the difference of maximum functions from finite numbers of continuously differentiable functions. The main formulas for Clarke subdifferential calculus have been presented in the form of inclusions. The condition when the Clarke subdifferential has been equal to the difference of Clarke subdifferentials has been defined for locally Lipschitz functions.

AB - The concepts of the generalized derivative on direction, the subdifferential and the Clarke subdifferential have been introduced for locally Lipschitz functions. The locally Lipschitz function has been the difference of maximum functions from finite numbers of continuously differentiable functions. The main formulas for Clarke subdifferential calculus have been presented in the form of inclusions. The condition when the Clarke subdifferential has been equal to the difference of Clarke subdifferentials has been defined for locally Lipschitz functions.

UR - http://www.scopus.com/inward/record.url?scp=0030177672&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:0030177672

SP - 121

EP - 123

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 3

ER -

ID: 36585772