Let Bd denote the unit ball of Cd, d≥1. Given a holomorphic function φ:Bd→B1, we study the corresponding family σα[φ], α∈∂B1, of Clark measures on the unit sphere ∂Bd. If φ is an inner function, then we introduce and investigate related unitary operators Uα mapping analogs of model spaces onto L2(σα), α∈∂B1. In particular, we explicitly characterize the set of Uα ⁎f such that fσα is a pluriharmonic measure. Also, for an arbitrary holomorphic φ:Bd→B1, we use the family σα[φ] to compute the essential norm of the composition operator Cφ:H2(B1)→H2(Bd).
| Original language | English |
|---|---|
| Article number | 108314 |
| Journal | Journal of Functional Analysis |
| Volume | 278 |
| Issue number | 2 |
| DOIs | |
| State | Published - 15 Jan 2020 |
| Externally published | Yes |
ID: 87314788