Research output: Contribution to journal › Article › peer-review
Atmospheric effects of the solar irradiance variations during 11-year solar cycle are investigated using a chemistry-climate model. The model is enhanced by a more detailed parameterization of the oxygen and ozone UV heating rates. The simulated ozone response to the imposed solar forcing shows a positive correlation in the tropical stratosphere and a negative correlation in the tropical mesosphere, in agreement with theoretical expectation. The model suggests an acceleration of the polar night jets in both hemispheres and a dipole structure in the temperature changes at high latitudes. The model results also show an alteration of the tropospheric circulation air resulting in a statistically significant warming of 1 K in the annual mean surface air temperature over North America and Siberia. This supports the idea of a solar-climate connection.
Original language | English |
---|---|
Article number | 06119 |
Number of pages | 4 |
Journal | Geophysical Research Letters |
Volume | 31 |
Issue number | 6 |
DOIs | |
State | Published - 24 Mar 2004 |
ID: 121595739