Standard

Centrality of K_2 for Chevalley groups: a pro-group approach. / Лавренов, Андрей Валентинович; Синчук, Сергей Сергеевич; Воронецкий, Егор Юрьевич.

In: Israel Journal of Mathematics, Vol. 262, 01.09.2024, p. 97-142.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Лавренов, Андрей Валентинович ; Синчук, Сергей Сергеевич ; Воронецкий, Егор Юрьевич. / Centrality of K_2 for Chevalley groups: a pro-group approach. In: Israel Journal of Mathematics. 2024 ; Vol. 262. pp. 97-142.

BibTeX

@article{f4d74899132f470e85b9122cde258e07,
title = "Centrality of K_2 for Chevalley groups: a pro-group approach",
abstract = "We prove the centrality of K2(F4, R) for an arbitrary commutative ring R. This completes the proof of the centrality of K2(Φ, R) for any root system Φ of rank ≥ 3. Our proof uses only elementary localization techniques reformulated in terms of pro-groups. Another new result of the paper is the construction of a crossed module on the canonical homomorphism St(Φ, R) → Gsc(Φ, R), which has not been known previously for exceptional Φ.",
author = "Лавренов, {Андрей Валентинович} and Синчук, {Сергей Сергеевич} and Воронецкий, {Егор Юрьевич}",
year = "2024",
month = sep,
day = "1",
doi = "10.1007/s11856-024-2608-y",
language = "English",
volume = "262",
pages = "97--142",
journal = "Israel Journal of Mathematics",
issn = "0021-2172",
publisher = "Springer Nature",

}

RIS

TY - JOUR

T1 - Centrality of K_2 for Chevalley groups: a pro-group approach

AU - Лавренов, Андрей Валентинович

AU - Синчук, Сергей Сергеевич

AU - Воронецкий, Егор Юрьевич

PY - 2024/9/1

Y1 - 2024/9/1

N2 - We prove the centrality of K2(F4, R) for an arbitrary commutative ring R. This completes the proof of the centrality of K2(Φ, R) for any root system Φ of rank ≥ 3. Our proof uses only elementary localization techniques reformulated in terms of pro-groups. Another new result of the paper is the construction of a crossed module on the canonical homomorphism St(Φ, R) → Gsc(Φ, R), which has not been known previously for exceptional Φ.

AB - We prove the centrality of K2(F4, R) for an arbitrary commutative ring R. This completes the proof of the centrality of K2(Φ, R) for any root system Φ of rank ≥ 3. Our proof uses only elementary localization techniques reformulated in terms of pro-groups. Another new result of the paper is the construction of a crossed module on the canonical homomorphism St(Φ, R) → Gsc(Φ, R), which has not been known previously for exceptional Φ.

UR - https://www.mendeley.com/catalogue/4de03100-e482-3907-a271-76293c297a33/

U2 - 10.1007/s11856-024-2608-y

DO - 10.1007/s11856-024-2608-y

M3 - Article

VL - 262

SP - 97

EP - 142

JO - Israel Journal of Mathematics

JF - Israel Journal of Mathematics

SN - 0021-2172

ER -

ID: 126321476