• Michael Förg
  • Léo Colombier
  • Robin K. Patel
  • Jessica Lindlau
  • Aditya D. Mohite
  • Hisato Yamaguchi
  • Mikhail M. Glazov
  • David Hunger
  • Alexander Högele

Monolayer transition metal dichalcogenides integrated in optical microcavities host exciton-polaritons as a hallmark of the strong light-matter coupling regime. Analogous concepts for hybrid light-matter systems employing spatially indirect excitons with a permanent electric dipole moment in heterobilayer crystals promise realizations of exciton-polariton gases and condensates with inherent dipolar interactions. Here, we implement cavity-control of interlayer excitons in vertical MoSe2-WSe2 heterostructures. Our experiments demonstrate the Purcell effect for heterobilayer emission in cavity-modified photonic environments, and quantify the light-matter coupling strength of interlayer excitons. The results will facilitate further developments of dipolar exciton-polariton gases and condensates in hybrid cavity – van der Waals heterostructure systems.

Original languageEnglish
Article number3697
Number of pages6
JournalNature Communications
Volume10
Issue number1
Early online date16 Aug 2019
DOIs
StatePublished - 16 Aug 2019

    Scopus subject areas

  • Physics and Astronomy(all)
  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)

    Research areas

  • cavity, coupling, electrical property, light effect, transition element, Article, gas, quantitative analysis, GROWTH

ID: 49044168