DOI

The study is devoted to the evaluation of vibrational relaxation times in carbon dioxide using the kinetic theory methods. There are several relaxation channels in CO2, such as vibrational-translational energy transitions within modes and vibrational-vibrational exchanges between different modes. The theoretical expressions for the relaxation times of such processes are derived; they depend on the energy variation in a specific collision and cross sections of corresponding transitions. The first-order perturbation theory as well as two modifications of the forced harmonic oscillator (FHO) model are implemented for the transition probabilities. Relaxation times are evaluated in the temperature range 500-10000 K; it is shown that they are strongly affected by the cross section model. It is found that the FHO model provides good agreement with experimental data at low and moderate temperatures; at high temperatures, both models give non-monotonic trends for the relaxation times. The reasons of such behaviour are analysed.

Translated title of the contributionРасчет времени колебательной релаксации в углекислом газе с использованием модели нагруженного гармонического осциллятора
Original languageEnglish
Title of host publicationInternational Conference on the Methods of Aerophysical Research, ICMAR 2020
EditorsVasily M. Fomin, Alexander Shiplyuk
PublisherAmerican Institute of Physics
Pages96-97
ISBN (Electronic)9780735440999
DOIs
StatePublished - 24 May 2021
Event20th International Conference on the Methods of Aerophysical Research, ICMAR 2020 - Akademgorodok, Novosibirsk, Russian Federation
Duration: 1 Nov 20207 Nov 2020

Publication series

NameAIP Conference Proceedings
Volume2351
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference20th International Conference on the Methods of Aerophysical Research, ICMAR 2020
Country/TerritoryRussian Federation
CityAkademgorodok, Novosibirsk
Period1/11/207/11/20

    Scopus subject areas

  • Physics and Astronomy(all)

ID: 70965475