In this chapter, we study the structure of C1 interiors of some basic sets of dynamical systems having various shadowing properties. We give either complete proofs or schemes of proof of the following main results: • The C1 interior of the set of diffeomorphisms having the standard shadowing property is a subset of the set of structurally stable diffeomorphisms (Theorem 3.1.1); this result and Theorem 1.4.1 (a) imply that the C1 interior of the set of diffeomorphisms having the standard shadowing property coincides with the set of structurally stable diffeomorphisms; • the set Int1.OrientSPF n B/ is a subset of the set of structurally stable vector fields (Theorem 3.3.1); similarly to the case of diffeomorphisms, this result and Theorem 1.4.1 (b) imply that the set Int1.OrientSPF n B/ coincides with the set of structurally stable vector fields; • the set Int1.OrientSPF/ contains vector fields that are not structurally stable (Theorem 3.4.1).

Original languageEnglish
Title of host publicationLecture Notes in Mathematics
PublisherSpringer Nature
Pages125-179
Number of pages55
DOIs
StatePublished - 2017

Publication series

NameLecture Notes in Mathematics
Volume2193
ISSN (Print)0075-8434

    Scopus subject areas

  • Algebra and Number Theory

ID: 74985747