Standard

Bellman vs. beurling: Sharp estimates of uniform convexity for Lp spaces. / Zatitskiy, P. B.; Stolyarov, D. M.; Ivanisvili, P.

In: St. Petersburg Mathematical Journal, Vol. 27, No. 2, 01.01.2016, p. 333-343.

Research output: Contribution to journalArticlepeer-review

Harvard

Zatitskiy, PB, Stolyarov, DM & Ivanisvili, P 2016, 'Bellman vs. beurling: Sharp estimates of uniform convexity for Lp spaces', St. Petersburg Mathematical Journal, vol. 27, no. 2, pp. 333-343. https://doi.org/10.1090/spmj/1390

APA

Vancouver

Author

Zatitskiy, P. B. ; Stolyarov, D. M. ; Ivanisvili, P. / Bellman vs. beurling: Sharp estimates of uniform convexity for Lp spaces. In: St. Petersburg Mathematical Journal. 2016 ; Vol. 27, No. 2. pp. 333-343.

BibTeX

@article{c496dc9e12f84daf97534eacc277eb9f,
title = "Bellman vs. beurling: Sharp estimates of uniform convexity for Lp spaces",
abstract = "The classical Hanner inequalities are obtained by the Bellman function method. These inequalities give sharp estimates for the moduli of convexity of Lebesgue spaces, initially due to Clarkson and Beurling. Easy ideas from differential geometry make it possible to find the Bellman function by using neither {"}magic guesses{"} nor bulky calculations.",
keywords = "Bellman function, Torsion, Uniform convexity",
author = "Zatitskiy, {P. B.} and Stolyarov, {D. M.} and P. Ivanisvili",
year = "2016",
month = jan,
day = "1",
doi = "10.1090/spmj/1390",
language = "English",
volume = "27",
pages = "333--343",
journal = "St. Petersburg Mathematical Journal",
issn = "1061-0022",
publisher = "American Mathematical Society",
number = "2",

}

RIS

TY - JOUR

T1 - Bellman vs. beurling: Sharp estimates of uniform convexity for Lp spaces

AU - Zatitskiy, P. B.

AU - Stolyarov, D. M.

AU - Ivanisvili, P.

PY - 2016/1/1

Y1 - 2016/1/1

N2 - The classical Hanner inequalities are obtained by the Bellman function method. These inequalities give sharp estimates for the moduli of convexity of Lebesgue spaces, initially due to Clarkson and Beurling. Easy ideas from differential geometry make it possible to find the Bellman function by using neither "magic guesses" nor bulky calculations.

AB - The classical Hanner inequalities are obtained by the Bellman function method. These inequalities give sharp estimates for the moduli of convexity of Lebesgue spaces, initially due to Clarkson and Beurling. Easy ideas from differential geometry make it possible to find the Bellman function by using neither "magic guesses" nor bulky calculations.

KW - Bellman function

KW - Torsion

KW - Uniform convexity

UR - http://www.scopus.com/inward/record.url?scp=84958245415&partnerID=8YFLogxK

U2 - 10.1090/spmj/1390

DO - 10.1090/spmj/1390

M3 - Article

AN - SCOPUS:84958245415

VL - 27

SP - 333

EP - 343

JO - St. Petersburg Mathematical Journal

JF - St. Petersburg Mathematical Journal

SN - 1061-0022

IS - 2

ER -

ID: 35958987