Standard

Bäcklund transformations and divisor doubling. / Tsiganov, A. V.

In: Journal of Geometry and Physics, Vol. 126, 01.03.2018, p. 148-158.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Tsiganov, A. V. / Bäcklund transformations and divisor doubling. In: Journal of Geometry and Physics. 2018 ; Vol. 126. pp. 148-158.

BibTeX

@article{4d2eb7303a8c43d38e426f03cf53f99a,
title = "B{\"a}cklund transformations and divisor doubling",
abstract = "In classical mechanics well-known cryptographic algorithms and protocols can be very useful for construction of canonical transformations preserving form of Hamiltonians. We consider application of a standard generic divisor doubling for construction of new auto B{\"a}cklund transformations for the Lagrange top and H{\'e}non–Heiles system separable in parabolic coordinates.",
keywords = "Arithmetic of divisors, Backlund transformations, Integrable systems, Separation of variables, SYSTEMS, SEPARATION",
author = "Tsiganov, {A. V.}",
year = "2018",
month = mar,
day = "1",
doi = "10.1016/j.geomphys.2018.01.017",
language = "English",
volume = "126",
pages = "148--158",
journal = "Journal of Geometry and Physics",
issn = "0393-0440",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Bäcklund transformations and divisor doubling

AU - Tsiganov, A. V.

PY - 2018/3/1

Y1 - 2018/3/1

N2 - In classical mechanics well-known cryptographic algorithms and protocols can be very useful for construction of canonical transformations preserving form of Hamiltonians. We consider application of a standard generic divisor doubling for construction of new auto Bäcklund transformations for the Lagrange top and Hénon–Heiles system separable in parabolic coordinates.

AB - In classical mechanics well-known cryptographic algorithms and protocols can be very useful for construction of canonical transformations preserving form of Hamiltonians. We consider application of a standard generic divisor doubling for construction of new auto Bäcklund transformations for the Lagrange top and Hénon–Heiles system separable in parabolic coordinates.

KW - Arithmetic of divisors

KW - Backlund transformations

KW - Integrable systems

KW - Separation of variables

KW - SYSTEMS

KW - SEPARATION

UR - http://www.scopus.com/inward/record.url?scp=85044673743&partnerID=8YFLogxK

U2 - 10.1016/j.geomphys.2018.01.017

DO - 10.1016/j.geomphys.2018.01.017

M3 - Article

AN - SCOPUS:85044673743

VL - 126

SP - 148

EP - 158

JO - Journal of Geometry and Physics

JF - Journal of Geometry and Physics

SN - 0393-0440

ER -

ID: 18305387