Standard

Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb–Pb collisions at sNN=2.76TeV. / ALICE Collaboration.

In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Vol. 785, 10.10.2018, p. 320-331.

Research output: Contribution to journalArticlepeer-review

Harvard

ALICE Collaboration 2018, 'Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb–Pb collisions at sNN=2.76TeV', Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, vol. 785, pp. 320-331. https://doi.org/10.1016/j.physletb.2018.06.042

APA

ALICE Collaboration (2018). Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb–Pb collisions at sNN=2.76TeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 785, 320-331. https://doi.org/10.1016/j.physletb.2018.06.042

Vancouver

ALICE Collaboration. Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb–Pb collisions at sNN=2.76TeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2018 Oct 10;785:320-331. https://doi.org/10.1016/j.physletb.2018.06.042

Author

ALICE Collaboration. / Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb–Pb collisions at sNN=2.76TeV. In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2018 ; Vol. 785. pp. 320-331.

BibTeX

@article{7d785116ac6044469bfade6cc751a093,
title = "Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb–Pb collisions at sNN=2.76TeV",
abstract = "Azimuthally-differential femtoscopic measurements, being sensitive to spatio-temporal characteristics of the source as well as to the collective velocity fields at freeze out, provide very important information on the nature and dynamics of the system evolution. While the HBT radii oscillations relative to the second harmonic event plane measured recently reflect mostly the spatial geometry of the source, model studies have shown that the HBT radii oscillations relative to the third harmonic event plane are predominantly defined by the velocity fields. In this Letter, we present the first results on azimuthally-differential pion femtoscopy relative to the third harmonic event plane as a function of the pion pair transverse momentum kT for different collision centralities in Pb–Pb collisions at sNN=2.76 TeV. We find that the Rside and Rout radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate in phase relative to the third harmonic event plane, similar to the results from 3+1D hydrodynamical calculations. The observed radii oscillations unambiguously signal a collective expansion and anisotropy in the velocity fields. A comparison of the measured radii oscillations with the Blast-Wave model calculations indicate that the initial state triangularity is washed-out at freeze out.",
author = "{ALICE Collaboration} and S. Acharya and Acosta, {F. T.} and D. Adamov{\'a} and J. Adolfsson and Aggarwal, {M. M.} and {Aglieri Rinella}, G. and M. Agnello and N. Agrawal and Z. Ahammed and Ahn, {S. U.} and S. Aiola and A. Akindinov and M. Al-Turany and Alam, {S. N.} and Albuquerque, {D. S.D.} and D. Aleksandrov and B. Alessandro and {Alfaro Molina}, R. and Y. Ali and A. Alici and A. Alkin and J. Alme and T. Alt and L. Altenkamper and I. Altsybeev and C. Andrei and D. Andreou and Andrews, {H. A.} and A. Andronic and M. Angeletti and V. Anguelov and C. Anson and T. Anti{\v c}i{\'c} and F. Antinori and P. Antonioli and N. Apadula and L. Aphecetche and H. Appelsh{\"a}user and S. Arcelli and R. Arnaldi and Arnold, {O. W.} and Arsene, {I. C.} and M. Arslandok and B. Audurier and G. Feofilov and V. Kondratiev and V. Kovalenko and V. Vechernin and L. Vinogradov and A. Zarochentsev",
year = "2018",
month = oct,
day = "10",
doi = "10.1016/j.physletb.2018.06.042",
language = "English",
volume = "785",
pages = "320--331",
journal = "Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics",
issn = "0370-2693",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb–Pb collisions at sNN=2.76TeV

AU - ALICE Collaboration

AU - Acharya, S.

AU - Acosta, F. T.

AU - Adamová, D.

AU - Adolfsson, J.

AU - Aggarwal, M. M.

AU - Aglieri Rinella, G.

AU - Agnello, M.

AU - Agrawal, N.

AU - Ahammed, Z.

AU - Ahn, S. U.

AU - Aiola, S.

AU - Akindinov, A.

AU - Al-Turany, M.

AU - Alam, S. N.

AU - Albuquerque, D. S.D.

AU - Aleksandrov, D.

AU - Alessandro, B.

AU - Alfaro Molina, R.

AU - Ali, Y.

AU - Alici, A.

AU - Alkin, A.

AU - Alme, J.

AU - Alt, T.

AU - Altenkamper, L.

AU - Altsybeev, I.

AU - Andrei, C.

AU - Andreou, D.

AU - Andrews, H. A.

AU - Andronic, A.

AU - Angeletti, M.

AU - Anguelov, V.

AU - Anson, C.

AU - Antičić, T.

AU - Antinori, F.

AU - Antonioli, P.

AU - Apadula, N.

AU - Aphecetche, L.

AU - Appelshäuser, H.

AU - Arcelli, S.

AU - Arnaldi, R.

AU - Arnold, O. W.

AU - Arsene, I. C.

AU - Arslandok, M.

AU - Audurier, B.

AU - Feofilov, G.

AU - Kondratiev, V.

AU - Kovalenko, V.

AU - Vechernin, V.

AU - Vinogradov, L.

AU - Zarochentsev, A.

PY - 2018/10/10

Y1 - 2018/10/10

N2 - Azimuthally-differential femtoscopic measurements, being sensitive to spatio-temporal characteristics of the source as well as to the collective velocity fields at freeze out, provide very important information on the nature and dynamics of the system evolution. While the HBT radii oscillations relative to the second harmonic event plane measured recently reflect mostly the spatial geometry of the source, model studies have shown that the HBT radii oscillations relative to the third harmonic event plane are predominantly defined by the velocity fields. In this Letter, we present the first results on azimuthally-differential pion femtoscopy relative to the third harmonic event plane as a function of the pion pair transverse momentum kT for different collision centralities in Pb–Pb collisions at sNN=2.76 TeV. We find that the Rside and Rout radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate in phase relative to the third harmonic event plane, similar to the results from 3+1D hydrodynamical calculations. The observed radii oscillations unambiguously signal a collective expansion and anisotropy in the velocity fields. A comparison of the measured radii oscillations with the Blast-Wave model calculations indicate that the initial state triangularity is washed-out at freeze out.

AB - Azimuthally-differential femtoscopic measurements, being sensitive to spatio-temporal characteristics of the source as well as to the collective velocity fields at freeze out, provide very important information on the nature and dynamics of the system evolution. While the HBT radii oscillations relative to the second harmonic event plane measured recently reflect mostly the spatial geometry of the source, model studies have shown that the HBT radii oscillations relative to the third harmonic event plane are predominantly defined by the velocity fields. In this Letter, we present the first results on azimuthally-differential pion femtoscopy relative to the third harmonic event plane as a function of the pion pair transverse momentum kT for different collision centralities in Pb–Pb collisions at sNN=2.76 TeV. We find that the Rside and Rout radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate in phase relative to the third harmonic event plane, similar to the results from 3+1D hydrodynamical calculations. The observed radii oscillations unambiguously signal a collective expansion and anisotropy in the velocity fields. A comparison of the measured radii oscillations with the Blast-Wave model calculations indicate that the initial state triangularity is washed-out at freeze out.

UR - http://www.scopus.com/inward/record.url?scp=85053804355&partnerID=8YFLogxK

U2 - 10.1016/j.physletb.2018.06.042

DO - 10.1016/j.physletb.2018.06.042

M3 - Article

AN - SCOPUS:85053804355

VL - 785

SP - 320

EP - 331

JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

SN - 0370-2693

ER -

ID: 38307986