Standard

Average Dimension of Shift Spaces. / Vinogradov, O. L.

In: Lobachevskii Journal of Mathematics, Vol. 39, No. 5, 01.06.2018, p. 717-721.

Research output: Contribution to journalArticlepeer-review

Harvard

Vinogradov, OL 2018, 'Average Dimension of Shift Spaces', Lobachevskii Journal of Mathematics, vol. 39, no. 5, pp. 717-721. https://doi.org/10.1134/S199508021805013X

APA

Vinogradov, O. L. (2018). Average Dimension of Shift Spaces. Lobachevskii Journal of Mathematics, 39(5), 717-721. https://doi.org/10.1134/S199508021805013X

Vancouver

Vinogradov OL. Average Dimension of Shift Spaces. Lobachevskii Journal of Mathematics. 2018 Jun 1;39(5):717-721. https://doi.org/10.1134/S199508021805013X

Author

Vinogradov, O. L. / Average Dimension of Shift Spaces. In: Lobachevskii Journal of Mathematics. 2018 ; Vol. 39, No. 5. pp. 717-721.

BibTeX

@article{1b33e17208854bad97745cfa9e0dcfaa,
title = "Average Dimension of Shift Spaces",
abstract = "Recently the author obtained a series of sharp estimates of convolution classes by spaces of shifts of a single function. Those estimates generalize the well-known classical inequalities of Favard, Akhiezer and Krein. In the present paper we compute the average dimension of shift spaces. It appears that this dimension coincides with the average dimension of the spaces of entire functions of exponential type and of equidistant splines.",
keywords = "average dimension, Sharp constants, shift spaces",
author = "Vinogradov, {O. L.}",
year = "2018",
month = jun,
day = "1",
doi = "10.1134/S199508021805013X",
language = "English",
volume = "39",
pages = "717--721",
journal = "Lobachevskii Journal of Mathematics",
issn = "1995-0802",
publisher = "Pleiades Publishing",
number = "5",

}

RIS

TY - JOUR

T1 - Average Dimension of Shift Spaces

AU - Vinogradov, O. L.

PY - 2018/6/1

Y1 - 2018/6/1

N2 - Recently the author obtained a series of sharp estimates of convolution classes by spaces of shifts of a single function. Those estimates generalize the well-known classical inequalities of Favard, Akhiezer and Krein. In the present paper we compute the average dimension of shift spaces. It appears that this dimension coincides with the average dimension of the spaces of entire functions of exponential type and of equidistant splines.

AB - Recently the author obtained a series of sharp estimates of convolution classes by spaces of shifts of a single function. Those estimates generalize the well-known classical inequalities of Favard, Akhiezer and Krein. In the present paper we compute the average dimension of shift spaces. It appears that this dimension coincides with the average dimension of the spaces of entire functions of exponential type and of equidistant splines.

KW - average dimension

KW - Sharp constants

KW - shift spaces

UR - http://www.scopus.com/inward/record.url?scp=85049601082&partnerID=8YFLogxK

U2 - 10.1134/S199508021805013X

DO - 10.1134/S199508021805013X

M3 - Article

AN - SCOPUS:85049601082

VL - 39

SP - 717

EP - 721

JO - Lobachevskii Journal of Mathematics

JF - Lobachevskii Journal of Mathematics

SN - 1995-0802

IS - 5

ER -

ID: 37832619