DOI

  • Susanna F. De Rezende
  • Mika Göös
  • Jakob Nordström
  • Toniann Pitassi
  • Robert Robere
  • Dmitry Sokolov

We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula F, it is NP-hard to find a refutation of F in the Nullstellensatz, Polynomial Calculus, or Sherali-Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a simplified proof of, the recent breakthrough of Atserias and Müller (JACM 2020) that established an analogous result for Resolution.

Original languageEnglish
Title of host publicationSTOC 2021 - Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
EditorsSamir Khuller, Virginia Vassilevska Williams
PublisherAssociation for Computing Machinery
Pages209-222
Number of pages14
ISBN (Electronic)9781450380539
DOIs
StatePublished - 15 Jun 2021
Event53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021 - Virtual, Online, Italy
Duration: 21 Jun 202125 Jun 2021

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021
Country/TerritoryItaly
CityVirtual, Online
Period21/06/2125/06/21

    Scopus subject areas

  • Software

    Research areas

  • algebraic proof systems, automatability, lower bounds, pigeonhole principle, proof complexity

ID: 84277175