The splitting method is one of the most powerful and well-studied approaches to solving various NP-hard problems. The main idea of this method is to split the input instance of a problem into several simpler instances (further simplified by certain simplification rules) such that when the solution for each of them is found, one can construct the solution for the initial instance in polynomial time. There exists a huge number of papers describing algorithms of this type, and usually a considerable part of such a paper is devoted to case analysis. In this paper, we present a program that, given a set of simplification rules, automatically generates a proof of an upper bound on the running time of a splitting algorithm using these rules. As an example, we report the results of experiments with such a program for the SAT, MAXSAT, and (n, 3)-MAXSAT (the MAXSAT problem for the case where every variable in the formula appears at most three times) problems. Bibliography: 13 titles.

Original languageEnglish
Pages (from-to)2383-2391
Number of pages9
JournalJournal of Mathematical Sciences
Volume134
Issue number5
DOIs
StatePublished - 1 May 2006

    Scopus subject areas

  • Statistics and Probability
  • Mathematics(all)
  • Applied Mathematics

ID: 49826548