Research output: Contribution to journal › Article › peer-review
Automated Classification of Plasma Regions Using 3D Particle Energy Distributions. / Olshevsky, Vyacheslav; Khotyaintsev, Yuri V.; Lalti, Ahmad; Divin, Andrey; Delzanno, Gian Luca; Anderzén, Sven; Herman, Pawel; Chien, Steven W.D.; Avanov, Levon; Dimmock, Andrew P.; Markidis, Stefano.
In: journal of geophysical research: Space Physics, Vol. 126, No. 10, e2021JA029620, 10.09.2021.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Automated Classification of Plasma Regions Using 3D Particle Energy Distributions
AU - Olshevsky, Vyacheslav
AU - Khotyaintsev, Yuri V.
AU - Lalti, Ahmad
AU - Divin, Andrey
AU - Delzanno, Gian Luca
AU - Anderzén, Sven
AU - Herman, Pawel
AU - Chien, Steven W.D.
AU - Avanov, Levon
AU - Dimmock, Andrew P.
AU - Markidis, Stefano
N1 - Publisher Copyright: © 2021. The Authors.
PY - 2021/9/10
Y1 - 2021/9/10
N2 - We investigate the properties of the ion sky maps produced by the Dual Ion Spectrometers (DIS) from the Fast Plasma Investigation (FPI). We have trained a convolutional neural network classifier to predict four regions crossed by the Magnetospheric Multiscale Mission (MMS) on the dayside magnetosphere: solar wind, ion foreshock, magnetosheath, and magnetopause using solely DIS spectrograms. The accuracy of the classifier is (Formula presented.) %. We use the classifier to detect mixed plasma regions, in particular to find the bow shock regions. A similar approach can be used to identify the magnetopause crossings and reveal regions prone to magnetic reconnection. Data processing through the trained classifier is fast and efficient and thus can be used for classification for the whole MMS database.
AB - We investigate the properties of the ion sky maps produced by the Dual Ion Spectrometers (DIS) from the Fast Plasma Investigation (FPI). We have trained a convolutional neural network classifier to predict four regions crossed by the Magnetospheric Multiscale Mission (MMS) on the dayside magnetosphere: solar wind, ion foreshock, magnetosheath, and magnetopause using solely DIS spectrograms. The accuracy of the classifier is (Formula presented.) %. We use the classifier to detect mixed plasma regions, in particular to find the bow shock regions. A similar approach can be used to identify the magnetopause crossings and reveal regions prone to magnetic reconnection. Data processing through the trained classifier is fast and efficient and thus can be used for classification for the whole MMS database.
KW - MMS
KW - machine learning
KW - bow shock
UR - http://www.scopus.com/inward/record.url?scp=85118179129&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/6616a845-a796-34d8-892f-3051445fd269/
U2 - 10.1029/2021JA029620
DO - 10.1029/2021JA029620
M3 - Article
AN - SCOPUS:85118179129
VL - 126
JO - Journal of Geophysical Research: Space Physics
JF - Journal of Geophysical Research: Space Physics
SN - 2169-9380
IS - 10
M1 - e2021JA029620
ER -
ID: 89311906