Standard

Asymptotic estimates for integrals. / Bauer, S. M.; Filippov, S. B.; Smirnov, A. L.; Tovstik, P. E.; Vaillancourt, R.

International Series of Numerical Mathematics. Springer Nature, 2015. p. 51-88 (International Series of Numerical Mathematics; Vol. 167).

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Harvard

Bauer, SM, Filippov, SB, Smirnov, AL, Tovstik, PE & Vaillancourt, R 2015, Asymptotic estimates for integrals. in International Series of Numerical Mathematics. International Series of Numerical Mathematics, vol. 167, Springer Nature, pp. 51-88. https://doi.org/10.1007/978-3-319-18311-4_2

APA

Bauer, S. M., Filippov, S. B., Smirnov, A. L., Tovstik, P. E., & Vaillancourt, R. (2015). Asymptotic estimates for integrals. In International Series of Numerical Mathematics (pp. 51-88). (International Series of Numerical Mathematics; Vol. 167). Springer Nature. https://doi.org/10.1007/978-3-319-18311-4_2

Vancouver

Bauer SM, Filippov SB, Smirnov AL, Tovstik PE, Vaillancourt R. Asymptotic estimates for integrals. In International Series of Numerical Mathematics. Springer Nature. 2015. p. 51-88. (International Series of Numerical Mathematics). https://doi.org/10.1007/978-3-319-18311-4_2

Author

Bauer, S. M. ; Filippov, S. B. ; Smirnov, A. L. ; Tovstik, P. E. ; Vaillancourt, R. / Asymptotic estimates for integrals. International Series of Numerical Mathematics. Springer Nature, 2015. pp. 51-88 (International Series of Numerical Mathematics).

BibTeX

@inbook{6c781bd22bc145418af485d9c4acd057,
title = "Asymptotic estimates for integrals",
abstract = "Mechanical problems can be described by differential equations, the solutions of which often cannot be expressed by elementary functions, but have an integral representation.",
author = "Bauer, {S. M.} and Filippov, {S. B.} and Smirnov, {A. L.} and Tovstik, {P. E.} and R. Vaillancourt",
year = "2015",
month = jan,
day = "1",
doi = "10.1007/978-3-319-18311-4_2",
language = "English",
series = "International Series of Numerical Mathematics",
publisher = "Springer Nature",
pages = "51--88",
booktitle = "International Series of Numerical Mathematics",
address = "Germany",

}

RIS

TY - CHAP

T1 - Asymptotic estimates for integrals

AU - Bauer, S. M.

AU - Filippov, S. B.

AU - Smirnov, A. L.

AU - Tovstik, P. E.

AU - Vaillancourt, R.

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Mechanical problems can be described by differential equations, the solutions of which often cannot be expressed by elementary functions, but have an integral representation.

AB - Mechanical problems can be described by differential equations, the solutions of which often cannot be expressed by elementary functions, but have an integral representation.

UR - http://www.scopus.com/inward/record.url?scp=85085319981&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-18311-4_2

DO - 10.1007/978-3-319-18311-4_2

M3 - Chapter

AN - SCOPUS:85085319981

T3 - International Series of Numerical Mathematics

SP - 51

EP - 88

BT - International Series of Numerical Mathematics

PB - Springer Nature

ER -

ID: 53751523