Modern ultrafiltration requires novel perfect membranes with narrow pore size, high porosity, and minimal pore tortuosity to achieve high separation performance. In this work, copolyamic acid (co-PAA) was synthesized and used for the preparation of asymmetric porous membranes by phase inversion technique. Several co-PAA membranes were heated up to 250 ◦C; during heating, they undergo solid-phase transformation into copolybenzoxazinoneimide (co-PBOI) via dehydration and cyclization. Comparative characterization of both co-PAA and co-PBOI membranes was realized by scanning electron microscopy, mechanical testing, thermogravimetric analysis, and ultrafiltration experiments. Membrane calibration was carried out using a mixture of seven proteins with different molecular weights. During heat treatment, the molecular weight cut-off of the membranes decreased from 20 × 103 g/mol (co-PAA) to 3 × 103 g/mol (co-PBOI). Abnormally low dispersions of rejection (0.3 for co-PAA and 0.45 for co-PBOI) were observed for the studied membranes; this fact indicates that the membranes possess enhanced resolving power.