• Dmitrii V Bozhko
  • Vladislav O Myrov
  • Sofia M Kolchanova
  • Aleksandr I Polovian
  • Georgii K Galumov
  • Konstantin A Demin
  • Konstantin N Zabegalov
  • Tatiana Strekalova
  • Murilo S de Abreu
  • Elena V Petersen
  • Allan V Kalueff

Zebrafish (Danio rerio) are rapidly emerging in biomedicine as promising tools for disease modelling and drug discovery. The use of zebrafish for neuroscience research is also growing rapidly, necessitating novel reliable and unbiased methods of neurophenotypic data collection and analyses. Here, we applied the artificial intelligence (AI) neural network-based algorithms to a large dataset of adult zebrafish locomotor tracks collected previously in vivo experiments with multiple established psychotropic drugs. We first trained AI to recognize various drugs from a wide range of psychotropic agents tested, and then confirmed prediction accuracy of trained AI by comparing several agents with known similar behavioral and pharmacological profiles. Presenting a framework for innovative neurophenotyping, this proof-of-concept study aims to improve AI-driven movement pattern classification in zebrafish, thereby fostering drug discovery and development utilizing this key model organism.

Original languageEnglish
Article number110405
Pages (from-to)110405
Number of pages12
JournalProgress in Neuro-Psychopharmacology and Biological Psychiatry
Volume112
Early online date25 Jul 2021
DOIs
StatePublished - 10 Jan 2022

    Research areas

  • neural network, Artificial intelligence, locomotion, Zebrafish, CNS drug screening, Locomotion, Neural network, SYSTEM, ANXIETY, BEHAVIOR, MODEL, ADULT ZEBRAFISH, CANCER, DEEP, NEURAL-NETWORKS, FRAMEWORK, TOOLS

    Scopus subject areas

  • Biological Psychiatry
  • Pharmacology

ID: 84590998