Standard

Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. / Thomann, Alexis; Brukhin, Vladimir; Dieterle, Monika; Gheyeselinck, Jacqueline; Vantard, Marylin; Grossniklaus, Ueli; Genschik, Pascal.

In: Plant Journal, Vol. 43, No. 3, 01.08.2005, p. 437-448.

Research output: Contribution to journalArticlepeer-review

Harvard

Thomann, A, Brukhin, V, Dieterle, M, Gheyeselinck, J, Vantard, M, Grossniklaus, U & Genschik, P 2005, 'Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis', Plant Journal, vol. 43, no. 3, pp. 437-448. https://doi.org/10.1111/j.1365-313X.2005.02467.x

APA

Thomann, A., Brukhin, V., Dieterle, M., Gheyeselinck, J., Vantard, M., Grossniklaus, U., & Genschik, P. (2005). Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. Plant Journal, 43(3), 437-448. https://doi.org/10.1111/j.1365-313X.2005.02467.x

Vancouver

Thomann A, Brukhin V, Dieterle M, Gheyeselinck J, Vantard M, Grossniklaus U et al. Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. Plant Journal. 2005 Aug 1;43(3):437-448. https://doi.org/10.1111/j.1365-313X.2005.02467.x

Author

Thomann, Alexis ; Brukhin, Vladimir ; Dieterle, Monika ; Gheyeselinck, Jacqueline ; Vantard, Marylin ; Grossniklaus, Ueli ; Genschik, Pascal. / Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. In: Plant Journal. 2005 ; Vol. 43, No. 3. pp. 437-448.

BibTeX

@article{0a21754503574222b4faf59f7c250c4f,
title = "Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis",
abstract = "Cullin (CUL)-dependent ubiquitin ligases form a class of structurally related multisubunit enzymes that control the rapid and selective degradation of important regulatory proteins involved in cell cycle progression and development, among others. The CUL3-BTB ligases belong to this class of enzymes and despite recent findings on their molecular composition, our knowledge on their functions and substrates remains still very limited. In contrast to budding and fission yeast, CUL3 is an essential gene in metazoans. The model plant Arabidopsis thaliana encodes two related CUL3 genes, called CUL3A and CUL3B. We recently reported that cul3a loss-of-function mutants are viable but exhibit a mild flowering and light sensitivity phenotype. We investigated the spatial and temporal expression of the two CUL3 genes in reproductive tissues and found that their expression patterns are largely overlapping suggesting possible functional redundancy. Thus, we investigated the consequences on plant development of combined Arabidopsis cul3a cul3b loss-of-function mutations. Homozygous cul3b mutant plants developed normally and were fully fertile. However, the disruption of both the CUL3A and CUL3B genes reduced gametophytic transmission and caused embryo lethality. The observed embryo abortion was found to be under maternal control. Arrest of embryogenesis occurred at multiple stages of embryo development, but predominantly at the heart stage. At the cytological level, CUL3 loss-of-function mutations affected both embryo pattern formation and endosperm development.",
keywords = "Arabidopsis thaliana, Cell cycle, Cullin, Embryogenesis, Ubiquitin",
author = "Alexis Thomann and Vladimir Brukhin and Monika Dieterle and Jacqueline Gheyeselinck and Marylin Vantard and Ueli Grossniklaus and Pascal Genschik",
year = "2005",
month = aug,
day = "1",
doi = "10.1111/j.1365-313X.2005.02467.x",
language = "English",
volume = "43",
pages = "437--448",
journal = "Plant Journal",
issn = "0960-7412",
publisher = "Wiley-Blackwell",
number = "3",

}

RIS

TY - JOUR

T1 - Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis

AU - Thomann, Alexis

AU - Brukhin, Vladimir

AU - Dieterle, Monika

AU - Gheyeselinck, Jacqueline

AU - Vantard, Marylin

AU - Grossniklaus, Ueli

AU - Genschik, Pascal

PY - 2005/8/1

Y1 - 2005/8/1

N2 - Cullin (CUL)-dependent ubiquitin ligases form a class of structurally related multisubunit enzymes that control the rapid and selective degradation of important regulatory proteins involved in cell cycle progression and development, among others. The CUL3-BTB ligases belong to this class of enzymes and despite recent findings on their molecular composition, our knowledge on their functions and substrates remains still very limited. In contrast to budding and fission yeast, CUL3 is an essential gene in metazoans. The model plant Arabidopsis thaliana encodes two related CUL3 genes, called CUL3A and CUL3B. We recently reported that cul3a loss-of-function mutants are viable but exhibit a mild flowering and light sensitivity phenotype. We investigated the spatial and temporal expression of the two CUL3 genes in reproductive tissues and found that their expression patterns are largely overlapping suggesting possible functional redundancy. Thus, we investigated the consequences on plant development of combined Arabidopsis cul3a cul3b loss-of-function mutations. Homozygous cul3b mutant plants developed normally and were fully fertile. However, the disruption of both the CUL3A and CUL3B genes reduced gametophytic transmission and caused embryo lethality. The observed embryo abortion was found to be under maternal control. Arrest of embryogenesis occurred at multiple stages of embryo development, but predominantly at the heart stage. At the cytological level, CUL3 loss-of-function mutations affected both embryo pattern formation and endosperm development.

AB - Cullin (CUL)-dependent ubiquitin ligases form a class of structurally related multisubunit enzymes that control the rapid and selective degradation of important regulatory proteins involved in cell cycle progression and development, among others. The CUL3-BTB ligases belong to this class of enzymes and despite recent findings on their molecular composition, our knowledge on their functions and substrates remains still very limited. In contrast to budding and fission yeast, CUL3 is an essential gene in metazoans. The model plant Arabidopsis thaliana encodes two related CUL3 genes, called CUL3A and CUL3B. We recently reported that cul3a loss-of-function mutants are viable but exhibit a mild flowering and light sensitivity phenotype. We investigated the spatial and temporal expression of the two CUL3 genes in reproductive tissues and found that their expression patterns are largely overlapping suggesting possible functional redundancy. Thus, we investigated the consequences on plant development of combined Arabidopsis cul3a cul3b loss-of-function mutations. Homozygous cul3b mutant plants developed normally and were fully fertile. However, the disruption of both the CUL3A and CUL3B genes reduced gametophytic transmission and caused embryo lethality. The observed embryo abortion was found to be under maternal control. Arrest of embryogenesis occurred at multiple stages of embryo development, but predominantly at the heart stage. At the cytological level, CUL3 loss-of-function mutations affected both embryo pattern formation and endosperm development.

KW - Arabidopsis thaliana

KW - Cell cycle

KW - Cullin

KW - Embryogenesis

KW - Ubiquitin

UR - http://www.scopus.com/inward/record.url?scp=27644538063&partnerID=8YFLogxK

U2 - 10.1111/j.1365-313X.2005.02467.x

DO - 10.1111/j.1365-313X.2005.02467.x

M3 - Article

C2 - 16045478

AN - SCOPUS:27644538063

VL - 43

SP - 437

EP - 448

JO - Plant Journal

JF - Plant Journal

SN - 0960-7412

IS - 3

ER -

ID: 41168735