Research output: Contribution to journal › Article › peer-review
Approximation Properties of Systems of Periodic Wavelets on the Cantor Group. / Lebedeva, E. A.
In: Journal of Mathematical Sciences (United States), Vol. 244, No. 4, 01.01.2020, p. 642-648.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Approximation Properties of Systems of Periodic Wavelets on the Cantor Group
AU - Lebedeva, E. A.
N1 - Lebedeva, E.A. J Math Sci (2020) 244: 642. https://doi.org/10.1007/s10958-019-04638-7
PY - 2020/1/1
Y1 - 2020/1/1
N2 - We construct systems of periodic dyadic wavelets and study approximation properties of such systems by using the notion of a multiresolution analysis. We prove a Jackson type inequality for the spaces constituting the multiresolution analysis and obtain a periodic analogue of the Strang–Fix condition.
AB - We construct systems of periodic dyadic wavelets and study approximation properties of such systems by using the notion of a multiresolution analysis. We prove a Jackson type inequality for the spaces constituting the multiresolution analysis and obtain a periodic analogue of the Strang–Fix condition.
UR - http://www.scopus.com/inward/record.url?scp=85077026344&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/44d08236-a7cb-32dd-bb80-2c1bbe7a3968/
U2 - 10.1007/s10958-019-04638-7
DO - 10.1007/s10958-019-04638-7
M3 - Article
AN - SCOPUS:85077026344
VL - 244
SP - 642
EP - 648
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 4
ER -
ID: 50341553