Research output: Contribution to journal › Article › peer-review
Approximate commutativity for a decaying potential and a function of an elliptic operator. / Sloushch, V.A.
In: St. Petersburg Mathematical Journal, Vol. 26, No. 5, 2015, p. 849-857.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Approximate commutativity for a decaying potential and a function of an elliptic operator
AU - Sloushch, V.A.
PY - 2015
Y1 - 2015
N2 - For a continuous function $ \varphi (\lambda )$, $ \lambda \in \mathbb{R}$, with compact support, a bounded function $ W(x)$, $ x\in \mathbb{R}^{d}$, with power-like asymptotics at infinity, and a suitable selfadjoint operator $ H$ in $ L_{2}({\mathbb{R}}^{d})$, estimates for the singular values of the operator $ \varphi (H)W-W\varphi (H)$ are considered. It is proved that the singular values of $ \varphi (H)W-W\varphi (H)$ decay faster than those of $ \varphi (H)W$. A relationship between the singular values asymptotics for the operators $ \varphi (H)W$ and $ \varphi ^{n}(H)W^{n}$ is also established. - See more at: http://www.ams.org/journals/spmj/2015-26-05/S1061-0022-2015-01362-9/#sthash.QmnAJspJ.dpuf
AB - For a continuous function $ \varphi (\lambda )$, $ \lambda \in \mathbb{R}$, with compact support, a bounded function $ W(x)$, $ x\in \mathbb{R}^{d}$, with power-like asymptotics at infinity, and a suitable selfadjoint operator $ H$ in $ L_{2}({\mathbb{R}}^{d})$, estimates for the singular values of the operator $ \varphi (H)W-W\varphi (H)$ are considered. It is proved that the singular values of $ \varphi (H)W-W\varphi (H)$ decay faster than those of $ \varphi (H)W$. A relationship between the singular values asymptotics for the operators $ \varphi (H)W$ and $ \varphi ^{n}(H)W^{n}$ is also established. - See more at: http://www.ams.org/journals/spmj/2015-26-05/S1061-0022-2015-01362-9/#sthash.QmnAJspJ.dpuf
KW - Elliptic differential operators
KW - integral operators
KW - estimates for singular values
KW - classes of compact operators - See more at: http://www.ams.org/journals/spmj/2015-26-05/S1061-0022-2015-01362-9/#sthash.QmnAJspJ.dpuf
U2 - 10.1090/spmj/1362
DO - 10.1090/spmj/1362
M3 - Article
VL - 26
SP - 849
EP - 857
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 5
ER -
ID: 3978231