A new SPD technique, equal channel angular pressing with parallel channels (ECAP-PC), has been recently developed. The method has a few advantages over conventional ECAP. In this work, the ECAP-PC is applied to the Al alloys 6061 and 6063. The AAl6061 is subjected to ECAP-PC at 100°C for 4 passes. The Al6063 alloy is subjected to ECAP-PC at 100°C and 160°C for 3 passes to study the effect of the temperature on the microstructure and mechanical properties after processing. It is demonstrated that an equiaxed ultra-fine grained (UFG) microstructure is formed in the Al6061 alloy after ECAP-PC for 4 passes. The similar microstructure is observed in the AA6063 pressed at 100°C for 3 passes whereas an increase of the processing temperature up to 160°C results in formation of complex microstructure consisting of ultra-fine grains and severely deformed areas. The latter effect is related to the significant recovery of the microstructure between two shearing events. Experimental study of mechanical properties and deformation behavior at room temperature is performed. It is demonstrated that ECAP-PC results in an increased strength of both Al alloys. It is outlined that both the length of the second channel of the ECAP-PC die and the ram speed might play a very important role in the microstructure formation during ECAP-PC processing. The use of short second channel and increased ram speed can be utilized to achieve a homogeneous microstructure even at elevated temperatures.

Original languageEnglish
Pages (from-to)411-414
Number of pages4
JournalInternational Journal of Material Forming
Volume3
Issue numberSUPPL. 1
DOIs
StatePublished - Apr 2010
Externally publishedYes

    Scopus subject areas

  • Materials Science(all)

    Research areas

  • Al alloys, Deformation behaviour, Equal channel angular pressing with parallel channels, Severe plastic deformation

ID: 16949781