Research output: Contribution to journal › Article › peer-review
Analogue of the Hyodo Inequality for the Ramification Depth in Degree p 2 Extensions. / Vostokov, S. V.; Haustov, N. V.; Zhukov, I. B.; Ivanova, O. Yu; Afanas’eva, S. S.
In: Vestnik St. Petersburg University: Mathematics, Vol. 51, No. 2, 01.04.2018, p. 114-123.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Analogue of the Hyodo Inequality for the Ramification Depth in Degree p 2 Extensions
AU - Vostokov, S. V.
AU - Haustov, N. V.
AU - Zhukov, I. B.
AU - Ivanova, O. Yu
AU - Afanas’eva, S. S.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - Ramification in complete discrete valuation fields is studied. For the case of a perfect residue field, there is a well-developed theory of ramification groups. Hyodo introduced the concept of ramification depth associated with the different of an extension and obtained an inequality that combines the concept of ramification depth in a degree p2 cyclotomic extension with the concept of ramification depth in a degree p subextension. The paper gives a detailed consideration of the structure of degree p2 extensions that can be obtained by a composite of two degree p extensions. In this case, it is not required that the residue field be perfect. Using the concepts of wild and ferocious extensions and the defect of the main unit, degree p2 extensions are classified and more accurate estimates for the ramification depth are obtained. In a number of cases, exact formulas for ramification depth are presented.
AB - Ramification in complete discrete valuation fields is studied. For the case of a perfect residue field, there is a well-developed theory of ramification groups. Hyodo introduced the concept of ramification depth associated with the different of an extension and obtained an inequality that combines the concept of ramification depth in a degree p2 cyclotomic extension with the concept of ramification depth in a degree p subextension. The paper gives a detailed consideration of the structure of degree p2 extensions that can be obtained by a composite of two degree p extensions. In this case, it is not required that the residue field be perfect. Using the concepts of wild and ferocious extensions and the defect of the main unit, degree p2 extensions are classified and more accurate estimates for the ramification depth are obtained. In a number of cases, exact formulas for ramification depth are presented.
KW - Hyodo inequality
KW - ramification depth
UR - http://www.scopus.com/inward/record.url?scp=85048654237&partnerID=8YFLogxK
U2 - 10.3103/S1063454118020103
DO - 10.3103/S1063454118020103
M3 - Article
AN - SCOPUS:85048654237
VL - 51
SP - 114
EP - 123
JO - Vestnik St. Petersburg University: Mathematics
JF - Vestnik St. Petersburg University: Mathematics
SN - 1063-4541
IS - 2
ER -
ID: 36612936