Standard

An analogue of the maslov index. / Netsvetaev, N. Yu.

In: Journal of Mathematical Sciences , Vol. 81, No. 2, 1996, p. 2535-2537.

Research output: Contribution to journalArticlepeer-review

Harvard

Netsvetaev, NY 1996, 'An analogue of the maslov index', Journal of Mathematical Sciences , vol. 81, no. 2, pp. 2535-2537. https://doi.org/10.1007/BF02362423

APA

Netsvetaev, N. Y. (1996). An analogue of the maslov index. Journal of Mathematical Sciences , 81(2), 2535-2537. https://doi.org/10.1007/BF02362423

Vancouver

Netsvetaev NY. An analogue of the maslov index. Journal of Mathematical Sciences . 1996;81(2):2535-2537. https://doi.org/10.1007/BF02362423

Author

Netsvetaev, N. Yu. / An analogue of the maslov index. In: Journal of Mathematical Sciences . 1996 ; Vol. 81, No. 2. pp. 2535-2537.

BibTeX

@article{f7fde3ab44f54683b7da9dc285f8cad9,
title = "An analogue of the maslov index",
abstract = "An analogue of the Maslov index is constructed for an n-dimensional oriented totally real submanifold of a quasicomplex 2n-manifold with the first Chern class vanishing modulo k. Relationships with the familiar invariants are considered in special cases.",
author = "Netsvetaev, {N. Yu}",
note = "Copyright: Copyright 2017 Elsevier B.V., All rights reserved.",
year = "1996",
doi = "10.1007/BF02362423",
language = "English",
volume = "81",
pages = "2535--2537",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - An analogue of the maslov index

AU - Netsvetaev, N. Yu

N1 - Copyright: Copyright 2017 Elsevier B.V., All rights reserved.

PY - 1996

Y1 - 1996

N2 - An analogue of the Maslov index is constructed for an n-dimensional oriented totally real submanifold of a quasicomplex 2n-manifold with the first Chern class vanishing modulo k. Relationships with the familiar invariants are considered in special cases.

AB - An analogue of the Maslov index is constructed for an n-dimensional oriented totally real submanifold of a quasicomplex 2n-manifold with the first Chern class vanishing modulo k. Relationships with the familiar invariants are considered in special cases.

UR - http://www.scopus.com/inward/record.url?scp=33748751143&partnerID=8YFLogxK

U2 - 10.1007/BF02362423

DO - 10.1007/BF02362423

M3 - Article

AN - SCOPUS:33748751143

VL - 81

SP - 2535

EP - 2537

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 2

ER -

ID: 75603099