An analog of the stolz angle for the unit ball in ℂn. / Shirokov, N. A.
In: Journal of Mathematical Sciences , Vol. 101, No. 3, 2000, p. 3216-3229.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - An analog of the stolz angle for the unit ball in ℂn
AU - Shirokov, N. A.
PY - 2000
Y1 - 2000
N2 - By a (ρ, c, q)-wedge in the unit ball double-struck B signn ⊂ ℂn we mean the union of the sets double-struck B sign ρn and Ec, q(e0), where double-struck B signρ n = (z ∈ ℂn: z ≤ ρ), 0 < ρ < 1, e0 = 1, 0 < q < 1, ρ > 1 - (1-q)2, and Ec, q(e0) = (z ∈ double-struck B signn: Im(1 - (z, e0)) ≤ cRe(1 - (z, e0)); z2 - (z, e0)2 ≤ q(1 - (z, e0)2)) (here (z, ξ) is the usual scalar product in ℂn). We denote by Ta, a ∈ double-struck B signn, a ≠ 0, the intersection double-struck B signn and the hyperplane (z: (z, a) = a2). This paper contains a description of the sets Z of the form ∪a∈A Ta, where A belongs to a finite union of (ρ, c, q)-wedges with 0 < q < 1/2. These sets may occur as zero-sets or interpolation sets for functions belonging to H∞ (double-struck B signn).
AB - By a (ρ, c, q)-wedge in the unit ball double-struck B signn ⊂ ℂn we mean the union of the sets double-struck B sign ρn and Ec, q(e0), where double-struck B signρ n = (z ∈ ℂn: z ≤ ρ), 0 < ρ < 1, e0 = 1, 0 < q < 1, ρ > 1 - (1-q)2, and Ec, q(e0) = (z ∈ double-struck B signn: Im(1 - (z, e0)) ≤ cRe(1 - (z, e0)); z2 - (z, e0)2 ≤ q(1 - (z, e0)2)) (here (z, ξ) is the usual scalar product in ℂn). We denote by Ta, a ∈ double-struck B signn, a ≠ 0, the intersection double-struck B signn and the hyperplane (z: (z, a) = a2). This paper contains a description of the sets Z of the form ∪a∈A Ta, where A belongs to a finite union of (ρ, c, q)-wedges with 0 < q < 1/2. These sets may occur as zero-sets or interpolation sets for functions belonging to H∞ (double-struck B signn).
UR - http://www.scopus.com/inward/record.url?scp=52849121485&partnerID=8YFLogxK
U2 - 10.1007/BF02673746
DO - 10.1007/BF02673746
M3 - Article
AN - SCOPUS:52849121485
VL - 101
SP - 3216
EP - 3229
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 3
ER -
ID: 86660939