Standard

An analog of the stolz angle for the unit ball in ℂn. / Shirokov, N. A.

In: Journal of Mathematical Sciences , Vol. 101, No. 3, 2000, p. 3216-3229.

Research output: Contribution to journalArticlepeer-review

Harvard

Shirokov, NA 2000, 'An analog of the stolz angle for the unit ball in ℂn', Journal of Mathematical Sciences , vol. 101, no. 3, pp. 3216-3229. https://doi.org/10.1007/BF02673746

APA

Vancouver

Author

Shirokov, N. A. / An analog of the stolz angle for the unit ball in ℂn. In: Journal of Mathematical Sciences . 2000 ; Vol. 101, No. 3. pp. 3216-3229.

BibTeX

@article{1647fcf6d37145e3a3d998eae38902bb,
title = "An analog of the stolz angle for the unit ball in ℂn",
abstract = "By a (ρ, c, q)-wedge in the unit ball double-struck B signn ⊂ ℂn we mean the union of the sets double-struck B sign ρn and Ec, q(e0), where double-struck B signρ n = (z ∈ ℂn: z ≤ ρ), 0 < ρ < 1, e0 = 1, 0 < q < 1, ρ > 1 - (1-q)2, and Ec, q(e0) = (z ∈ double-struck B signn: Im(1 - (z, e0)) ≤ cRe(1 - (z, e0)); z2 - (z, e0)2 ≤ q(1 - (z, e0)2)) (here (z, ξ) is the usual scalar product in ℂn). We denote by Ta, a ∈ double-struck B signn, a ≠ 0, the intersection double-struck B signn and the hyperplane (z: (z, a) = a2). This paper contains a description of the sets Z of the form ∪a∈A Ta, where A belongs to a finite union of (ρ, c, q)-wedges with 0 < q < 1/2. These sets may occur as zero-sets or interpolation sets for functions belonging to H∞ (double-struck B signn).",
author = "Shirokov, {N. A.}",
year = "2000",
doi = "10.1007/BF02673746",
language = "English",
volume = "101",
pages = "3216--3229",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "3",

}

RIS

TY - JOUR

T1 - An analog of the stolz angle for the unit ball in ℂn

AU - Shirokov, N. A.

PY - 2000

Y1 - 2000

N2 - By a (ρ, c, q)-wedge in the unit ball double-struck B signn ⊂ ℂn we mean the union of the sets double-struck B sign ρn and Ec, q(e0), where double-struck B signρ n = (z ∈ ℂn: z ≤ ρ), 0 < ρ < 1, e0 = 1, 0 < q < 1, ρ > 1 - (1-q)2, and Ec, q(e0) = (z ∈ double-struck B signn: Im(1 - (z, e0)) ≤ cRe(1 - (z, e0)); z2 - (z, e0)2 ≤ q(1 - (z, e0)2)) (here (z, ξ) is the usual scalar product in ℂn). We denote by Ta, a ∈ double-struck B signn, a ≠ 0, the intersection double-struck B signn and the hyperplane (z: (z, a) = a2). This paper contains a description of the sets Z of the form ∪a∈A Ta, where A belongs to a finite union of (ρ, c, q)-wedges with 0 < q < 1/2. These sets may occur as zero-sets or interpolation sets for functions belonging to H∞ (double-struck B signn).

AB - By a (ρ, c, q)-wedge in the unit ball double-struck B signn ⊂ ℂn we mean the union of the sets double-struck B sign ρn and Ec, q(e0), where double-struck B signρ n = (z ∈ ℂn: z ≤ ρ), 0 < ρ < 1, e0 = 1, 0 < q < 1, ρ > 1 - (1-q)2, and Ec, q(e0) = (z ∈ double-struck B signn: Im(1 - (z, e0)) ≤ cRe(1 - (z, e0)); z2 - (z, e0)2 ≤ q(1 - (z, e0)2)) (here (z, ξ) is the usual scalar product in ℂn). We denote by Ta, a ∈ double-struck B signn, a ≠ 0, the intersection double-struck B signn and the hyperplane (z: (z, a) = a2). This paper contains a description of the sets Z of the form ∪a∈A Ta, where A belongs to a finite union of (ρ, c, q)-wedges with 0 < q < 1/2. These sets may occur as zero-sets or interpolation sets for functions belonging to H∞ (double-struck B signn).

UR - http://www.scopus.com/inward/record.url?scp=52849121485&partnerID=8YFLogxK

U2 - 10.1007/BF02673746

DO - 10.1007/BF02673746

M3 - Article

AN - SCOPUS:52849121485

VL - 101

SP - 3216

EP - 3229

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 3

ER -

ID: 86660939