Standard

Amphiphilic acetylacetone-based carbon dots. / Cherevkov, S.A.; Stepanidenko, E.A.; Miruschenko, M.D.; Zverkov, A.M.; Mitroshin, A.M.; Margaryan, I.V.; Spiridonov, I.G.; Danilov, D.V.; Koroleva, A.V.; Zhizhin, E.V.; Baidakova, M.V.; Sokolov, R.V.; Sandzhieva, M.A.; Ushakova, E.V.; Rogach, A.L.

In: Journal of Materials Chemistry C, 09.02.2024.

Research output: Contribution to journalArticlepeer-review

Harvard

Cherevkov, SA, Stepanidenko, EA, Miruschenko, MD, Zverkov, AM, Mitroshin, AM, Margaryan, IV, Spiridonov, IG, Danilov, DV, Koroleva, AV, Zhizhin, EV, Baidakova, MV, Sokolov, RV, Sandzhieva, MA, Ushakova, EV & Rogach, AL 2024, 'Amphiphilic acetylacetone-based carbon dots', Journal of Materials Chemistry C. https://doi.org/10.1039/d3tc04675c

APA

Cherevkov, S. A., Stepanidenko, E. A., Miruschenko, M. D., Zverkov, A. M., Mitroshin, A. M., Margaryan, I. V., Spiridonov, I. G., Danilov, D. V., Koroleva, A. V., Zhizhin, E. V., Baidakova, M. V., Sokolov, R. V., Sandzhieva, M. A., Ushakova, E. V., & Rogach, A. L. (2024). Amphiphilic acetylacetone-based carbon dots. Journal of Materials Chemistry C. https://doi.org/10.1039/d3tc04675c

Vancouver

Cherevkov SA, Stepanidenko EA, Miruschenko MD, Zverkov AM, Mitroshin AM, Margaryan IV et al. Amphiphilic acetylacetone-based carbon dots. Journal of Materials Chemistry C. 2024 Feb 9. https://doi.org/10.1039/d3tc04675c

Author

Cherevkov, S.A. ; Stepanidenko, E.A. ; Miruschenko, M.D. ; Zverkov, A.M. ; Mitroshin, A.M. ; Margaryan, I.V. ; Spiridonov, I.G. ; Danilov, D.V. ; Koroleva, A.V. ; Zhizhin, E.V. ; Baidakova, M.V. ; Sokolov, R.V. ; Sandzhieva, M.A. ; Ushakova, E.V. ; Rogach, A.L. / Amphiphilic acetylacetone-based carbon dots. In: Journal of Materials Chemistry C. 2024.

BibTeX

@article{595b1e0c6ed5490aafeeb8ce98795de3,
title = "Amphiphilic acetylacetone-based carbon dots",
abstract = "The ongoing development of carbon dots (CDs) for different applications calls for researching novel methods for their synthesis and surface functionalization. For the fabrication of photonic devices, apart from the obvious requirement of bright luminescence, CDs also should be soluble in the non-polar solvents used for the ink-printing of their functional layers. Herein, we introduce amphiphilic CDs synthesized from a mixture of benzoic acid and ethylenediamine in acetylacetone, which satisfy both of the abovementioned requirements. These CDs are quasi-spherical nanoparticles that are 20-50 nm in size, with aliphatic, carbonyl, amide, imine, and carbamate groups at the surface. This wide spectrum of surface groups renders them amphiphilic and soluble in a variety of substances, such as toluene, chloroform, alcohol, and water, with relative polarity ranging from 0.002 to 1. By variation of the molar ratio of benzoic acid and ethylenediamine, the highest quantum yield reported so far of 36% in isopropanol is achieved for the amphiphilic CDs. As a demonstration of the use of developed amphiphilic CDs in LEDs, green-emitting charge-injection devices were fabricated with a broad emission band centered at 515 nm, maximal luminance of 1716 cd m−2, and CCT of 5627 K. These LEDs are the first ones based on amphiphilic CDs. Furthermore, these CDs can be used as luminescent inks and as an active material for solar concentrators. {\textcopyright} 2024 The Royal Society of Chemistry.",
keywords = "Acetone, Amides, Carbon, Chlorine compounds, Light emitting diodes, Luminescence, Molar ratio, Photonic devices, Acetylacetone, Amphiphilics, Carbon dots, Ethylene diamine, Functional layer, Non-polar solvents, Novel methods, Photonics devices, Surface Functionalization, Synthesised, Benzoic acid",
author = "S.A. Cherevkov and E.A. Stepanidenko and M.D. Miruschenko and A.M. Zverkov and A.M. Mitroshin and I.V. Margaryan and I.G. Spiridonov and D.V. Danilov and A.V. Koroleva and E.V. Zhizhin and M.V. Baidakova and R.V. Sokolov and M.A. Sandzhieva and E.V. Ushakova and A.L. Rogach",
note = "Export Date: 11 March 2024 CODEN: JMCCC Адрес для корреспонденции: Ushakova, E.V.; International Research and Education Centre for Physics of Nanostructures, Russian Federation; эл. почта: elena.ushakova@itmo.ru Текст о финансировании 1: This research was supported by Priority 2030 Federal Academic Leadership Program, RSF 22-13-00294, and by the project “Experimental and theoretical studies of near-infrared-emitting and chiral carbon dot luminophores project” from Moravian-Silesian Region, contract no. 00734/2023/RRC. TEM studies were performed on the equipment of the Interdisciplinary Resource Centre for Nanotechnology of the Scientific Park of St. Petersburg State University. XPS studies were performed using the equipment of the Resource Center “Physical methods of surface investigation” of the Scientific Park of St. Petersburg State University. The authors express their gratitude to the ITMO University Core Facility Center “Nanotechnologies”. Пристатейные ссылки: Ragazzon, G., Cadranel, A., Ushakova, E.V., Wang, Y., Guldi, D.M., Rogach, A.L., Kotov, N.A., Prato, M., (2021) Chem, 7, pp. 606-628; Wang, B., Cai, H., Waterhouse, G.I.N., Qu, X., Yang, B., Lu, S., (2022) Small Sci., 2, p. 2200012; Wang, B., Lu, S., (2022) Matter, 5, pp. 110-149; Dor{\d}evi{\'c}, L., Arcudi, F., Cacioppo, M., Prato, M., (2022) Nat. Nanotechnol., 17, pp. 112-130; Litvin, A.P., Zhang, X., Ushakova, E.V., Rogach, A.L., (2021) Adv. Funct. Mater., p. 2010768; Zhai, Y., Zhang, B., Shi, R., Zhang, S., Liu, Y., Wang, B., Zhang, K., Lu, S., (2022) Adv. Energy Mater., 12, p. 2103426; Mandal, S., Das, P., (2022) Appl. Mater. Today, 26, p. 101331; Feng, T., Tao, S., Yue, D., Zeng, Q., Chen, W., Yang, B., (2020) Small, 16, p. 2001295; Xu, Q., Cai, H., Li, W., Wu, M., Wu, Y., Gong, X., (2022) J. Mater. Chem. A, 10, pp. 14709-14731; Talib, A., Pandey, S., Thakur, M., Wu, H.F., (2015) Mater. Sci. Eng., C, 48, pp. 700-703; Mitra, S., Chandra, S., Kundu, T., Banerjee, R., Pramanik, P., Goswami, A., (2012) RSC Adv., 2, pp. 12129-12131; Liu, M., Li, X., Zheng, Y., Zhu, Y., Li, T., He, Z., Zhang, C., Zhang, K., (2023) J. Mater. Sci., 58, pp. 902-910; Yang, H., Liu, Y., Guo, Z., Lei, B., Zhuang, J., Zhang, X., Liu, Z., Hu, C., (2019) Nat. Commun., 10, p. 1789; Rajendran, S., Bhunia, S.K., (2023) Colloids Surf., A, 661, p. 130882; Pagidi, S., Sadhanala, H.K., Sharma, K., Gedanken, A., (2022) Adv. Electron. Mater., 8, p. 2100969; Yin, K., Lu, D., Wang, L., Zhang, Q., Hao, J., Li, G., Li, H., (2019) J. Phys. Chem. C, 123, pp. 22447-22456; Shi, X., Wang, X., Zhang, S., Zhang, Z., Meng, X., Liu, H., Qian, Y., Wang, H., (2023) Langmuir, 39, pp. 5056-5064; Yang, Y., Zhao, M., Lai, L., (2023) Carbon, 202, pp. 398-413; Zhao, P., Zhu, L., (2018) Chem. Commun., 54, pp. 5401-5406; Chen, P., He, X., Hu, Y., Tian, X.L., Yu, X.Q., Zhang, J., (2023) ACS Appl. Mater. Interfaces, 15, pp. 19937-19950; Zhao, P., Li, X., Baryshnikov, G., Wu, B., {\AA}gren, H., Zhang, J., Zhu, L., (2018) Chem. Sci., 9, pp. 1323-1329; Liu, Y., Sun, D., Zhang, Z., Zhang, L., Nie, S., Xiao, J., Chung, Y.S., Liu, C., (2020) Part. Part. Syst. Charact., 37, p. 2000146; Prakash, S., Sahu, S., Patra, B., Mishra, A.K., (2023) Spectrochim. Acta, Part A, 290, p. 122257; Choi, Y., Jo, S., Chae, A., Kim, Y.K., Park, J.E., Lim, D., Park, S.Y., In, I., (2017) ACS Appl. Mater. Interfaces, 9, pp. 27883-27893; Mikhraliieva, A., Tkachenko, O., Freire, R., Zaitsev, V., Xing, Y., Panteleimonov, A., Str{\o}mme, M., Budnyak, T.M., (2022) ACS Appl. Nano Mater., pp. 10962-10972; Xie, Z., Yin, Z., Wu, Y., Liu, C., Hao, X., Du, Q., Xu, X., (2017) Sci. Rep., 7, pp. 1-9; Xie, Z., Wang, F., Liu, C.-Y., Xie, Z., Wang, F., Liu, C.-Y., (2012) Adv. Mater., 24, pp. 1716-1721; Dong, X., Wang, Y., Guan, R., Ren, J., Xie, Z., Dong, X.Z., Wang, Y., Guan, R.F., (2021) Small, 17, p. 2105273; Xie, Z., Du, Q., Wu, Y., Hao, X., Liu, C., (2016) J. Mater. Chem. C, 4, pp. 9879-9886; Stepanidenko, E.A., Arefina, I.A., Khavlyuk, P.D., Dubavik, A., Bogdanov, K.V., Bondarenko, D.P., Cherevkov, S.A., Rogach, A.L., (2020) Nanoscale, 12, pp. 602-609; Reckmeier, C.J., Wang, Y., Zboril, R., Rogach, A.L., (2016) J. Phys. Chem. C, 120, pp. 10591-10604; Xiong, Y., Zhang, X., Richter, A.F., Li, Y., D{\"o}ring, A., Kas{\'a}k, P., Popelka, A., Rogach, A.L., (2019) ACS Nano, 13, pp. 12024-12031; Miao, X., Qu, D., Yang, D., Nie, B., Zhao, Y., Fan, H., Sun, Z., Yang, D., (2018) Adv. Mater., 30, p. 1704740; Bao, X., Yuan, Y., Chen, J., Zhang, B., Li, D., Zhou, D., Jing, P., Qu, S., (2018) Light: Sci. Appl., 7, pp. 1-11; Ding, H., Wei, J.-S., Zhong, N., Gao, Q.-Y., Xiong, H.-M., (2017) Langmuir, 33, pp. 12635-12642; Sun, X., He, W., Liu, B., (2022) J. Phys. Chem. C, 126, pp. 3540-3548; Umrao, S., Jang, M.H., Oh, J.H., Kim, G., Sahoo, S., Cho, Y.H., Srivastva, A., Oh, I.K., (2015) Carbon, 81, pp. 514-524; He, G., Shu, M., Yang, Z., Ma, Y., Huang, D., Xu, S., Wang, Y., Xu, L., (2017) Appl. Surf. Sci., 422, pp. 257-265; Ye, H.G., Lu, X., Cheng, R., Guo, J., Li, H., Wang, C.F., Chen, S., (2021) J. Lumin., 238, p. 118311; {\"O}zkar, S., {\"U}lk{\"u}, D., Yildirim, L.T., Biricik, N., G{\"u}mg{\"u}m, B., (2004) J. Mol. Struct., 688, pp. 207-211; Kovalenko, I., Bucknall, D.G., Yushin, G., (2010) Adv. Funct. Mater., 20, pp. 3979-3986; Do, S., Kwon, W., Kim, Y.-H.H., Kang, S.R., Lee, T.T.-W.W., Lee, T.T.-W.W., Rhee, S.-W.W., (2016) Adv. Opt. Mater., 4, pp. 276-284; Dutt Sharma, V., Kansay, V., Chandan, G., Bhatia, A., Kumar, N., Chakrabarti, S., Bera, M.K., (2023) Carbon, 201, pp. 972-983; Bai, J., Xiao, N., Wang, Y., Li, H., Liu, C., Xiao, J., Wei, Y., Qiu, J., (2021) Carbon, 174, pp. 750-756; Mintz, K.J., Bartoli, M., Rovere, M., Zhou, Y., Hettiarachchi, S.D., Paudyal, S., Chen, J., Leblanc, R.M., (2021) Carbon, 173, pp. 433-447; Lee, A.Y., Yang, K., Anh, N.D., Park, C., Lee, S.M., Lee, T.G., Jeong, M.S., (2021) Appl. Surf. Sci., 536, p. 147990; Dippel, B., Jander, H., Heintzenberg, J., (1999) Phys. Chem. Chem. Phys., 1, pp. 4707-4712; Al-Jishi, R., Dresselhaus, G., (1982) Phys. Rev. B: Condens. Matter Mater. Phys., 26, p. 4514; Ferrari, A.C., Robertson, J., (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 63, p. 121405; Ferrari, A.C., Rodil, S.E., Robertson, J., Rodil, S.E., Robertson, J., (2003) Phys. Rev. B: Condens. Matter Mater. Phys., 67, p. 155306; Vollebregt, S., Ishihara, R., Tichelaar, F.D., Hou, Y., Beenakker, C.I.M., (2012) Carbon, 50, pp. 3542-3554; Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Geim, A.K., (2006) Phys. Rev. Lett., 97, p. 187401; Tajaddini, N., Talebizadeh, M., Anary-Abbasinejad, M., (2019) Tetrahedron Lett., 60, pp. 366-370; Gao, D., Zhang, Y., Wu, K., Min, H., Wei, D., Sun, J., Yang, H., Fan, H., (2022) Biosens. Bioelectron., 200, p. 113928; Lakowicz, J.R., (2006) Principles of fluorescence spectroscopy, , Springer S. Baltimore USA; Kosolapova, K.D., Koroleva, A.V., Arefina, I.A., Miruschenko, M.D., Cherevkov, S.A., Spiridonov, I.G., Zhizhin, E.V., Rogach, A.L., (2023) Nanoscale, 15, pp. 8845-8853; Litvin, A.P., Zhang, X., Ushakova, E.V., Rogach, A.L., (2021) Adv. Funct. Mater., 31, p. 2010768; Wang, H., Li, H., Cai, W., Zhang, P., Cao, S., Chen, Z., Zang, Z., (2020) Nanoscale, 12, pp. 14369-14404; Xu, Z., Zhuang, Q., Zhou, Y., Lu, S., Wang, X., Cai, W., Zang, Z., (2023) Small Struct., 4, p. 2200338; Urushihara, N., Hirai, T., Dager, A., Nakamura, Y., Nishi, Y., Inoue, K., Suzuki, R., Tachibana, M., (2021) ACS Appl. Nano Mater., 4, pp. 12472-12480; Margaryan, I.V., Vedernikova, A.A., Parfenov, P.S., Baranov, M.A., Danilov, D.V., Koroleva, A.V., Zhizhin, E.V., Litvin, A.P., (2023) Photonics, 10, p. 379",
year = "2024",
month = feb,
day = "9",
doi = "10.1039/d3tc04675c",
language = "Английский",
journal = "Journal of Materials Chemistry C",
issn = "2050-7526",
publisher = "Royal Society of Chemistry",

}

RIS

TY - JOUR

T1 - Amphiphilic acetylacetone-based carbon dots

AU - Cherevkov, S.A.

AU - Stepanidenko, E.A.

AU - Miruschenko, M.D.

AU - Zverkov, A.M.

AU - Mitroshin, A.M.

AU - Margaryan, I.V.

AU - Spiridonov, I.G.

AU - Danilov, D.V.

AU - Koroleva, A.V.

AU - Zhizhin, E.V.

AU - Baidakova, M.V.

AU - Sokolov, R.V.

AU - Sandzhieva, M.A.

AU - Ushakova, E.V.

AU - Rogach, A.L.

N1 - Export Date: 11 March 2024 CODEN: JMCCC Адрес для корреспонденции: Ushakova, E.V.; International Research and Education Centre for Physics of Nanostructures, Russian Federation; эл. почта: elena.ushakova@itmo.ru Текст о финансировании 1: This research was supported by Priority 2030 Federal Academic Leadership Program, RSF 22-13-00294, and by the project “Experimental and theoretical studies of near-infrared-emitting and chiral carbon dot luminophores project” from Moravian-Silesian Region, contract no. 00734/2023/RRC. TEM studies were performed on the equipment of the Interdisciplinary Resource Centre for Nanotechnology of the Scientific Park of St. Petersburg State University. XPS studies were performed using the equipment of the Resource Center “Physical methods of surface investigation” of the Scientific Park of St. Petersburg State University. The authors express their gratitude to the ITMO University Core Facility Center “Nanotechnologies”. Пристатейные ссылки: Ragazzon, G., Cadranel, A., Ushakova, E.V., Wang, Y., Guldi, D.M., Rogach, A.L., Kotov, N.A., Prato, M., (2021) Chem, 7, pp. 606-628; Wang, B., Cai, H., Waterhouse, G.I.N., Qu, X., Yang, B., Lu, S., (2022) Small Sci., 2, p. 2200012; Wang, B., Lu, S., (2022) Matter, 5, pp. 110-149; Dorđević, L., Arcudi, F., Cacioppo, M., Prato, M., (2022) Nat. Nanotechnol., 17, pp. 112-130; Litvin, A.P., Zhang, X., Ushakova, E.V., Rogach, A.L., (2021) Adv. Funct. Mater., p. 2010768; Zhai, Y., Zhang, B., Shi, R., Zhang, S., Liu, Y., Wang, B., Zhang, K., Lu, S., (2022) Adv. Energy Mater., 12, p. 2103426; Mandal, S., Das, P., (2022) Appl. Mater. Today, 26, p. 101331; Feng, T., Tao, S., Yue, D., Zeng, Q., Chen, W., Yang, B., (2020) Small, 16, p. 2001295; Xu, Q., Cai, H., Li, W., Wu, M., Wu, Y., Gong, X., (2022) J. Mater. Chem. A, 10, pp. 14709-14731; Talib, A., Pandey, S., Thakur, M., Wu, H.F., (2015) Mater. Sci. Eng., C, 48, pp. 700-703; Mitra, S., Chandra, S., Kundu, T., Banerjee, R., Pramanik, P., Goswami, A., (2012) RSC Adv., 2, pp. 12129-12131; Liu, M., Li, X., Zheng, Y., Zhu, Y., Li, T., He, Z., Zhang, C., Zhang, K., (2023) J. Mater. Sci., 58, pp. 902-910; Yang, H., Liu, Y., Guo, Z., Lei, B., Zhuang, J., Zhang, X., Liu, Z., Hu, C., (2019) Nat. Commun., 10, p. 1789; Rajendran, S., Bhunia, S.K., (2023) Colloids Surf., A, 661, p. 130882; Pagidi, S., Sadhanala, H.K., Sharma, K., Gedanken, A., (2022) Adv. Electron. Mater., 8, p. 2100969; Yin, K., Lu, D., Wang, L., Zhang, Q., Hao, J., Li, G., Li, H., (2019) J. Phys. Chem. C, 123, pp. 22447-22456; Shi, X., Wang, X., Zhang, S., Zhang, Z., Meng, X., Liu, H., Qian, Y., Wang, H., (2023) Langmuir, 39, pp. 5056-5064; Yang, Y., Zhao, M., Lai, L., (2023) Carbon, 202, pp. 398-413; Zhao, P., Zhu, L., (2018) Chem. Commun., 54, pp. 5401-5406; Chen, P., He, X., Hu, Y., Tian, X.L., Yu, X.Q., Zhang, J., (2023) ACS Appl. Mater. Interfaces, 15, pp. 19937-19950; Zhao, P., Li, X., Baryshnikov, G., Wu, B., Ågren, H., Zhang, J., Zhu, L., (2018) Chem. Sci., 9, pp. 1323-1329; Liu, Y., Sun, D., Zhang, Z., Zhang, L., Nie, S., Xiao, J., Chung, Y.S., Liu, C., (2020) Part. Part. Syst. Charact., 37, p. 2000146; Prakash, S., Sahu, S., Patra, B., Mishra, A.K., (2023) Spectrochim. Acta, Part A, 290, p. 122257; Choi, Y., Jo, S., Chae, A., Kim, Y.K., Park, J.E., Lim, D., Park, S.Y., In, I., (2017) ACS Appl. Mater. Interfaces, 9, pp. 27883-27893; Mikhraliieva, A., Tkachenko, O., Freire, R., Zaitsev, V., Xing, Y., Panteleimonov, A., Strømme, M., Budnyak, T.M., (2022) ACS Appl. Nano Mater., pp. 10962-10972; Xie, Z., Yin, Z., Wu, Y., Liu, C., Hao, X., Du, Q., Xu, X., (2017) Sci. Rep., 7, pp. 1-9; Xie, Z., Wang, F., Liu, C.-Y., Xie, Z., Wang, F., Liu, C.-Y., (2012) Adv. Mater., 24, pp. 1716-1721; Dong, X., Wang, Y., Guan, R., Ren, J., Xie, Z., Dong, X.Z., Wang, Y., Guan, R.F., (2021) Small, 17, p. 2105273; Xie, Z., Du, Q., Wu, Y., Hao, X., Liu, C., (2016) J. Mater. Chem. C, 4, pp. 9879-9886; Stepanidenko, E.A., Arefina, I.A., Khavlyuk, P.D., Dubavik, A., Bogdanov, K.V., Bondarenko, D.P., Cherevkov, S.A., Rogach, A.L., (2020) Nanoscale, 12, pp. 602-609; Reckmeier, C.J., Wang, Y., Zboril, R., Rogach, A.L., (2016) J. Phys. Chem. C, 120, pp. 10591-10604; Xiong, Y., Zhang, X., Richter, A.F., Li, Y., Döring, A., Kasák, P., Popelka, A., Rogach, A.L., (2019) ACS Nano, 13, pp. 12024-12031; Miao, X., Qu, D., Yang, D., Nie, B., Zhao, Y., Fan, H., Sun, Z., Yang, D., (2018) Adv. Mater., 30, p. 1704740; Bao, X., Yuan, Y., Chen, J., Zhang, B., Li, D., Zhou, D., Jing, P., Qu, S., (2018) Light: Sci. Appl., 7, pp. 1-11; Ding, H., Wei, J.-S., Zhong, N., Gao, Q.-Y., Xiong, H.-M., (2017) Langmuir, 33, pp. 12635-12642; Sun, X., He, W., Liu, B., (2022) J. Phys. Chem. C, 126, pp. 3540-3548; Umrao, S., Jang, M.H., Oh, J.H., Kim, G., Sahoo, S., Cho, Y.H., Srivastva, A., Oh, I.K., (2015) Carbon, 81, pp. 514-524; He, G., Shu, M., Yang, Z., Ma, Y., Huang, D., Xu, S., Wang, Y., Xu, L., (2017) Appl. Surf. Sci., 422, pp. 257-265; Ye, H.G., Lu, X., Cheng, R., Guo, J., Li, H., Wang, C.F., Chen, S., (2021) J. Lumin., 238, p. 118311; Özkar, S., Ülkü, D., Yildirim, L.T., Biricik, N., Gümgüm, B., (2004) J. Mol. Struct., 688, pp. 207-211; Kovalenko, I., Bucknall, D.G., Yushin, G., (2010) Adv. Funct. Mater., 20, pp. 3979-3986; Do, S., Kwon, W., Kim, Y.-H.H., Kang, S.R., Lee, T.T.-W.W., Lee, T.T.-W.W., Rhee, S.-W.W., (2016) Adv. Opt. Mater., 4, pp. 276-284; Dutt Sharma, V., Kansay, V., Chandan, G., Bhatia, A., Kumar, N., Chakrabarti, S., Bera, M.K., (2023) Carbon, 201, pp. 972-983; Bai, J., Xiao, N., Wang, Y., Li, H., Liu, C., Xiao, J., Wei, Y., Qiu, J., (2021) Carbon, 174, pp. 750-756; Mintz, K.J., Bartoli, M., Rovere, M., Zhou, Y., Hettiarachchi, S.D., Paudyal, S., Chen, J., Leblanc, R.M., (2021) Carbon, 173, pp. 433-447; Lee, A.Y., Yang, K., Anh, N.D., Park, C., Lee, S.M., Lee, T.G., Jeong, M.S., (2021) Appl. Surf. Sci., 536, p. 147990; Dippel, B., Jander, H., Heintzenberg, J., (1999) Phys. Chem. Chem. Phys., 1, pp. 4707-4712; Al-Jishi, R., Dresselhaus, G., (1982) Phys. Rev. B: Condens. Matter Mater. Phys., 26, p. 4514; Ferrari, A.C., Robertson, J., (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 63, p. 121405; Ferrari, A.C., Rodil, S.E., Robertson, J., Rodil, S.E., Robertson, J., (2003) Phys. Rev. B: Condens. Matter Mater. Phys., 67, p. 155306; Vollebregt, S., Ishihara, R., Tichelaar, F.D., Hou, Y., Beenakker, C.I.M., (2012) Carbon, 50, pp. 3542-3554; Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Geim, A.K., (2006) Phys. Rev. Lett., 97, p. 187401; Tajaddini, N., Talebizadeh, M., Anary-Abbasinejad, M., (2019) Tetrahedron Lett., 60, pp. 366-370; Gao, D., Zhang, Y., Wu, K., Min, H., Wei, D., Sun, J., Yang, H., Fan, H., (2022) Biosens. Bioelectron., 200, p. 113928; Lakowicz, J.R., (2006) Principles of fluorescence spectroscopy, , Springer S. Baltimore USA; Kosolapova, K.D., Koroleva, A.V., Arefina, I.A., Miruschenko, M.D., Cherevkov, S.A., Spiridonov, I.G., Zhizhin, E.V., Rogach, A.L., (2023) Nanoscale, 15, pp. 8845-8853; Litvin, A.P., Zhang, X., Ushakova, E.V., Rogach, A.L., (2021) Adv. Funct. Mater., 31, p. 2010768; Wang, H., Li, H., Cai, W., Zhang, P., Cao, S., Chen, Z., Zang, Z., (2020) Nanoscale, 12, pp. 14369-14404; Xu, Z., Zhuang, Q., Zhou, Y., Lu, S., Wang, X., Cai, W., Zang, Z., (2023) Small Struct., 4, p. 2200338; Urushihara, N., Hirai, T., Dager, A., Nakamura, Y., Nishi, Y., Inoue, K., Suzuki, R., Tachibana, M., (2021) ACS Appl. Nano Mater., 4, pp. 12472-12480; Margaryan, I.V., Vedernikova, A.A., Parfenov, P.S., Baranov, M.A., Danilov, D.V., Koroleva, A.V., Zhizhin, E.V., Litvin, A.P., (2023) Photonics, 10, p. 379

PY - 2024/2/9

Y1 - 2024/2/9

N2 - The ongoing development of carbon dots (CDs) for different applications calls for researching novel methods for their synthesis and surface functionalization. For the fabrication of photonic devices, apart from the obvious requirement of bright luminescence, CDs also should be soluble in the non-polar solvents used for the ink-printing of their functional layers. Herein, we introduce amphiphilic CDs synthesized from a mixture of benzoic acid and ethylenediamine in acetylacetone, which satisfy both of the abovementioned requirements. These CDs are quasi-spherical nanoparticles that are 20-50 nm in size, with aliphatic, carbonyl, amide, imine, and carbamate groups at the surface. This wide spectrum of surface groups renders them amphiphilic and soluble in a variety of substances, such as toluene, chloroform, alcohol, and water, with relative polarity ranging from 0.002 to 1. By variation of the molar ratio of benzoic acid and ethylenediamine, the highest quantum yield reported so far of 36% in isopropanol is achieved for the amphiphilic CDs. As a demonstration of the use of developed amphiphilic CDs in LEDs, green-emitting charge-injection devices were fabricated with a broad emission band centered at 515 nm, maximal luminance of 1716 cd m−2, and CCT of 5627 K. These LEDs are the first ones based on amphiphilic CDs. Furthermore, these CDs can be used as luminescent inks and as an active material for solar concentrators. © 2024 The Royal Society of Chemistry.

AB - The ongoing development of carbon dots (CDs) for different applications calls for researching novel methods for their synthesis and surface functionalization. For the fabrication of photonic devices, apart from the obvious requirement of bright luminescence, CDs also should be soluble in the non-polar solvents used for the ink-printing of their functional layers. Herein, we introduce amphiphilic CDs synthesized from a mixture of benzoic acid and ethylenediamine in acetylacetone, which satisfy both of the abovementioned requirements. These CDs are quasi-spherical nanoparticles that are 20-50 nm in size, with aliphatic, carbonyl, amide, imine, and carbamate groups at the surface. This wide spectrum of surface groups renders them amphiphilic and soluble in a variety of substances, such as toluene, chloroform, alcohol, and water, with relative polarity ranging from 0.002 to 1. By variation of the molar ratio of benzoic acid and ethylenediamine, the highest quantum yield reported so far of 36% in isopropanol is achieved for the amphiphilic CDs. As a demonstration of the use of developed amphiphilic CDs in LEDs, green-emitting charge-injection devices were fabricated with a broad emission band centered at 515 nm, maximal luminance of 1716 cd m−2, and CCT of 5627 K. These LEDs are the first ones based on amphiphilic CDs. Furthermore, these CDs can be used as luminescent inks and as an active material for solar concentrators. © 2024 The Royal Society of Chemistry.

KW - Acetone

KW - Amides

KW - Carbon

KW - Chlorine compounds

KW - Light emitting diodes

KW - Luminescence

KW - Molar ratio

KW - Photonic devices

KW - Acetylacetone

KW - Amphiphilics

KW - Carbon dots

KW - Ethylene diamine

KW - Functional layer

KW - Non-polar solvents

KW - Novel methods

KW - Photonics devices

KW - Surface Functionalization

KW - Synthesised

KW - Benzoic acid

UR - https://www.mendeley.com/catalogue/ab7877a5-7fbe-393d-a2f4-60929730eab6/

U2 - 10.1039/d3tc04675c

DO - 10.1039/d3tc04675c

M3 - статья

JO - Journal of Materials Chemistry C

JF - Journal of Materials Chemistry C

SN - 2050-7526

ER -

ID: 117487218