Research output: Contribution to journal › Article › peer-review
Almost commuting functions of almost commuting self-adjoint operators. / Peller, Vladimir; Александров, Алексей Борисович.
In: Comptes Rendus Mathematique, Vol. 353, No. 7, 01.07.2015, p. 583-588.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Almost commuting functions of almost commuting self-adjoint operators
AU - Peller, Vladimir
AU - Александров, Алексей Борисович
N1 - Publisher Copyright: © 2015 Académie des sciences.
PY - 2015/7/1
Y1 - 2015/7/1
N2 - Let A and B be almost commuting (i.e, AB-BA∈S1) self-adjoint operators. We construct a functional calculus ϕ↦ϕ(A, B) for ϕ in the Besov class B∞,11(R2). This functional calculus is linear, the operators ϕ(A, B) and ψ(A, B) almost commute for ϕ,ψ∈B∞,11(R2), ϕ(A,B)=u(A)v(B) whenever ϕ(s,t)=u(s)v(t), and the Helton-Howe trace formula holds. The main tool is triple operator integrals.
AB - Let A and B be almost commuting (i.e, AB-BA∈S1) self-adjoint operators. We construct a functional calculus ϕ↦ϕ(A, B) for ϕ in the Besov class B∞,11(R2). This functional calculus is linear, the operators ϕ(A, B) and ψ(A, B) almost commute for ϕ,ψ∈B∞,11(R2), ϕ(A,B)=u(A)v(B) whenever ϕ(s,t)=u(s)v(t), and the Helton-Howe trace formula holds. The main tool is triple operator integrals.
UR - http://www.scopus.com/inward/record.url?scp=84930413782&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2015.04.012
DO - 10.1016/j.crma.2015.04.012
M3 - Article
AN - SCOPUS:84930413782
VL - 353
SP - 583
EP - 588
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
SN - 1631-073X
IS - 7
ER -
ID: 87308979