Standard

Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations. / Olemskoy, Igor V.; Eremin, Alexey S.

In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Vol. 17, No. 4, 2021, p. 353-369.

Research output: Contribution to journalArticlepeer-review

Harvard

Olemskoy, IV & Eremin, AS 2021, 'Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, vol. 17, no. 4, pp. 353-369. https://doi.org/10.21638/11701/SPBU10.2021.404

APA

Olemskoy, I. V., & Eremin, A. S. (2021). Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, 17(4), 353-369. https://doi.org/10.21638/11701/SPBU10.2021.404

Vancouver

Olemskoy IV, Eremin AS. Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2021;17(4):353-369. https://doi.org/10.21638/11701/SPBU10.2021.404

Author

Olemskoy, Igor V. ; Eremin, Alexey S. / Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations. In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2021 ; Vol. 17, No. 4. pp. 353-369.

BibTeX

@article{9040f56ab78e41d2b59573b0cddd5d05,
title = "Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations",
abstract = "Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit multischeme Runge-Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge -Kutta methods to provide the same order of convergence. The full system of order conditions is presented. This system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of computing the order conditions system solution with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.",
keywords = "Explicit Runge-Kutta, Multischeme methods, Order conditions, Partitioned methods, Sixth order method, Structural partitioning",
author = "Olemskoy, {Igor V.} and Eremin, {Alexey S.}",
note = "Publisher Copyright: {\textcopyright} 2021 Saint Petersburg State University. All rights reserved.",
year = "2021",
doi = "10.21638/11701/SPBU10.2021.404",
language = "English",
volume = "17",
pages = "353--369",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "4",

}

RIS

TY - JOUR

T1 - Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations

AU - Olemskoy, Igor V.

AU - Eremin, Alexey S.

N1 - Publisher Copyright: © 2021 Saint Petersburg State University. All rights reserved.

PY - 2021

Y1 - 2021

N2 - Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit multischeme Runge-Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge -Kutta methods to provide the same order of convergence. The full system of order conditions is presented. This system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of computing the order conditions system solution with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.

AB - Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit multischeme Runge-Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge -Kutta methods to provide the same order of convergence. The full system of order conditions is presented. This system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of computing the order conditions system solution with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.

KW - Explicit Runge-Kutta

KW - Multischeme methods

KW - Order conditions

KW - Partitioned methods

KW - Sixth order method

KW - Structural partitioning

UR - http://www.scopus.com/inward/record.url?scp=85125318918&partnerID=8YFLogxK

U2 - 10.21638/11701/SPBU10.2021.404

DO - 10.21638/11701/SPBU10.2021.404

M3 - Article

AN - SCOPUS:85125318918

VL - 17

SP - 353

EP - 369

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 4

ER -

ID: 92067556