DOI

A dynamical system d X/d t = F(X; A) is treated where F(X; A) is a polynomial (or some general type of radical contained) function in the vectors of state variables X ϵ ℝ n and parameters A ϵ ℝ m. We are looking for stability domains in both spaces, i.e. (a) domain ℙ ⊂ ℝ m such that for any parameter vector specialization A ϵ ℙ, there exists a stable equilibrium for the dynamical system, and (b) domain ⊂ ℝ n such that any point X ϵ could be made a stable equilibrium by a suitable specialization of the parameter vector A.

Original languageEnglish
Title of host publication8th Polyakhov's Reading
Subtitle of host publicationProceedings of the International Scientific Conference on Mechanics
EditorsElena Kustova, Gennady Leonov, Nikita Morosov, Mikhail Yushkov
PublisherAmerican Institute of Physics
Number of pages8
Volume1959
ISBN (Electronic)978-0-7354-1660-4
ISBN (Print)9780735416604
DOIs
StatePublished - 2 May 2018
EventInternational Scientific Conference on Mechanics - Eighth Polyakhov's Reading: 8th Polyakhov's Reading - Старый Петергоф, Saint Petersburg, Russian Federation
Duration: 29 Jan 20182 Feb 2018
Conference number: 8
https://events.spbu.ru/events/polyakhov_readings
http://nanomat.spbu.ru/en/node/175
http://nanomat.spbu.ru/ru/node/192
http://spbu.ru/news-events/calendar/viii-polyahovskie-chteniya

Publication series

NameAIP Conference Proceedings
Volume1959
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

ConferenceInternational Scientific Conference on Mechanics - Eighth Polyakhov's Reading
Country/TerritoryRussian Federation
CitySaint Petersburg
Period29/01/182/02/18
Internet address

    Scopus subject areas

  • Physics and Astronomy(all)

ID: 25930999