Separations: We introduce a monotone variant of Xor-Sat and show it has exponential monotone circuit complexity. Since Xor-Sat is in NC2, this improves qualitatively on the monotone vs. non-monotone separation of Tardos (1988). We also show that monotone span programs over R can be exponentially more powerful than over finite fields. These results can be interpreted as separating subclasses of TFNP in communication complexity. Characterizations: We show that the communication (resp. query) analogue of PPA (subclass of TFNP) captures span programs over F2 (resp. Nullstellensatz degree over F2). Previously, it was known that communication FP captures formulas (Karchmer–Wigderson, 1988) and that communication PLS captures circuits (Razborov, 1995).

Original languageEnglish
Title of host publication10th Innovations in Theoretical Computer Science, ITCS 2019
EditorsAvrim Blum
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959770958
DOIs
StatePublished - 1 Jan 2019
Event10th Innovations in Theoretical Computer Science, ITCS 2019 - San Diego, United States
Duration: 10 Jan 201912 Jan 2019

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume124
ISSN (Print)1868-8969

Conference

Conference10th Innovations in Theoretical Computer Science, ITCS 2019
Country/TerritoryUnited States
CitySan Diego
Period10/01/1912/01/19

    Research areas

  • Communication complexity, Monotone complexity, Proof complexity, TFNP

    Scopus subject areas

  • Software

ID: 52048030