Standard

Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function. / Belov, Yu S.

In: Journal of Mathematical Sciences , Vol. 148, No. 6, 01.02.2008, p. 813-829.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Belov, Yu S. / Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function. In: Journal of Mathematical Sciences . 2008 ; Vol. 148, No. 6. pp. 813-829.

BibTeX

@article{8ef078eb36a447b2b0fe65258113ad05,
title = "Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function",
abstract = "Let Θ be an inner function in the upper half-plane and let K Θ = H2 Θ ΘH2 be the associated model subspace of the Hardy space H2. We call a nonnegative function ω Θ-admissible if in the space K Θ there exists a nonzero function f KΘ such that |f| ≤ ω a.e. on ℝ. We give some sufficient conditions of Θ-admissibility for the case where Θ is a meromorphic function and arg Θ grows fast ((argΘ)′ tends to infinity). Bibliography: 9 titles.",
author = "Belov, {Yu S.}",
year = "2008",
month = feb,
day = "1",
doi = "10.1007/s10958-008-0028-x",
language = "English",
volume = "148",
pages = "813--829",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function

AU - Belov, Yu S.

PY - 2008/2/1

Y1 - 2008/2/1

N2 - Let Θ be an inner function in the upper half-plane and let K Θ = H2 Θ ΘH2 be the associated model subspace of the Hardy space H2. We call a nonnegative function ω Θ-admissible if in the space K Θ there exists a nonzero function f KΘ such that |f| ≤ ω a.e. on ℝ. We give some sufficient conditions of Θ-admissibility for the case where Θ is a meromorphic function and arg Θ grows fast ((argΘ)′ tends to infinity). Bibliography: 9 titles.

AB - Let Θ be an inner function in the upper half-plane and let K Θ = H2 Θ ΘH2 be the associated model subspace of the Hardy space H2. We call a nonnegative function ω Θ-admissible if in the space K Θ there exists a nonzero function f KΘ such that |f| ≤ ω a.e. on ℝ. We give some sufficient conditions of Θ-admissibility for the case where Θ is a meromorphic function and arg Θ grows fast ((argΘ)′ tends to infinity). Bibliography: 9 titles.

UR - http://www.scopus.com/inward/record.url?scp=38549174599&partnerID=8YFLogxK

U2 - 10.1007/s10958-008-0028-x

DO - 10.1007/s10958-008-0028-x

M3 - Article

AN - SCOPUS:38549174599

VL - 148

SP - 813

EP - 829

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 39999622