Research output: Contribution to journal › Article › peer-review
Adaptive Haar Type Wavelets on Manifolds. / Dem’yanovich, Yu K.
In: Journal of Mathematical Sciences (United States), Vol. 251, No. 6, 12.2020, p. 797-813.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Adaptive Haar Type Wavelets on Manifolds
AU - Dem’yanovich, Yu K.
N1 - Publisher Copyright: © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/12
Y1 - 2020/12
N2 - We consider embedded Haar type spaces associated with cell subdivisions of a smooth manifold. We use an adaptivity criterion connected with a nonnegative set function possessing certain monotonicity properties. We propose an algorithm for constructing embedded spaces satisfying the adaptivity criterion. To construct the wavelet decomposition, we apply the nonclassical approach and obtain the adaptive wavelet decomposition of the Haar type space on the manifold. Some model examples are given.
AB - We consider embedded Haar type spaces associated with cell subdivisions of a smooth manifold. We use an adaptivity criterion connected with a nonnegative set function possessing certain monotonicity properties. We propose an algorithm for constructing embedded spaces satisfying the adaptivity criterion. To construct the wavelet decomposition, we apply the nonclassical approach and obtain the adaptive wavelet decomposition of the Haar type space on the manifold. Some model examples are given.
UR - http://www.scopus.com/inward/record.url?scp=85096346051&partnerID=8YFLogxK
U2 - 10.1007/s10958-020-05130-3
DO - 10.1007/s10958-020-05130-3
M3 - Article
AN - SCOPUS:85096346051
VL - 251
SP - 797
EP - 813
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 6
ER -
ID: 85827386