Standard

A weighted estimate of best approximations in L2(Ω). / Dem'yanovich, Yu K.

In: Mathematical Notes of the Academy of Sciences of the USSR, Vol. 22, No. 2, 08.1977, p. 627-633.

Research output: Contribution to journalArticlepeer-review

Harvard

Dem'yanovich, YK 1977, 'A weighted estimate of best approximations in L2(Ω)', Mathematical Notes of the Academy of Sciences of the USSR, vol. 22, no. 2, pp. 627-633. https://doi.org/10.1007/BF01780972

APA

Dem'yanovich, Y. K. (1977). A weighted estimate of best approximations in L2(Ω). Mathematical Notes of the Academy of Sciences of the USSR, 22(2), 627-633. https://doi.org/10.1007/BF01780972

Vancouver

Dem'yanovich YK. A weighted estimate of best approximations in L2(Ω). Mathematical Notes of the Academy of Sciences of the USSR. 1977 Aug;22(2):627-633. https://doi.org/10.1007/BF01780972

Author

Dem'yanovich, Yu K. / A weighted estimate of best approximations in L2(Ω). In: Mathematical Notes of the Academy of Sciences of the USSR. 1977 ; Vol. 22, No. 2. pp. 627-633.

BibTeX

@article{44526f0b776f490d9673446e0dd0cf57,
title = "A weighted estimate of best approximations in L2(Ω)",
abstract = "The best approximation[Figure not available: see fulltext.] [in the space L2(Ω)] of a function f, satisfying a Lipschitz condition with exponent α, 0≤α≤1, with the aid of certain spaces of local functions, dependent on a parameter h, is discussed. We obtain the estimate {Mathematical expression}, where {Mathematical expression} and r = r(x) is the distance of the point x from the boundary of the domain Ω.",
author = "Dem'yanovich, {Yu K.}",
year = "1977",
month = aug,
doi = "10.1007/BF01780972",
language = "English",
volume = "22",
pages = "627--633",
journal = "Mathematical Notes",
issn = "0001-4346",
publisher = "Pleiades Publishing",
number = "2",

}

RIS

TY - JOUR

T1 - A weighted estimate of best approximations in L2(Ω)

AU - Dem'yanovich, Yu K.

PY - 1977/8

Y1 - 1977/8

N2 - The best approximation[Figure not available: see fulltext.] [in the space L2(Ω)] of a function f, satisfying a Lipschitz condition with exponent α, 0≤α≤1, with the aid of certain spaces of local functions, dependent on a parameter h, is discussed. We obtain the estimate {Mathematical expression}, where {Mathematical expression} and r = r(x) is the distance of the point x from the boundary of the domain Ω.

AB - The best approximation[Figure not available: see fulltext.] [in the space L2(Ω)] of a function f, satisfying a Lipschitz condition with exponent α, 0≤α≤1, with the aid of certain spaces of local functions, dependent on a parameter h, is discussed. We obtain the estimate {Mathematical expression}, where {Mathematical expression} and r = r(x) is the distance of the point x from the boundary of the domain Ω.

UR - http://www.scopus.com/inward/record.url?scp=34250287173&partnerID=8YFLogxK

U2 - 10.1007/BF01780972

DO - 10.1007/BF01780972

M3 - Article

AN - SCOPUS:34250287173

VL - 22

SP - 627

EP - 633

JO - Mathematical Notes

JF - Mathematical Notes

SN - 0001-4346

IS - 2

ER -

ID: 53485856