It was demonstrated in recent studies that some rhodopsins can be used in optogenetics as fluorescent indicators of membrane voltage. One of the promising candidates for these applications is archaerhodopsin-3. However, the fluorescent signal for wild-type achaerhodopsin-3 is not strong enough for real applications. Rational design of mutants with an improved signal is an important task, which requires both experimental and theoretical studies. Herein, we used a homology-based computational approach to predict the three-dimensional structure of archaerhodopsin-3, and a Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid approach with high-level multireference ab initio methodology (SORCI+Q/AMBER) to model optical properties of this protein. We demonstrated that this methodology allows for reliable prediction of structure and spectral properties of archaerhodopsin-3. The results of this study can be utilized for computational molecular design of efficient fluorescent indicators of membrane voltage for modern optogenetics on the basis of archaerhodopsin-3.

Original languageEnglish
Article number33
JournalF1000Research
Volume6
DOIs
StatePublished - 2017

    Research areas

  • Archaerhodopsin, Optogenetics, Protein structure prediction, QM/MM, Spectral tuning in rhodopsins

    Scopus subject areas

  • Medicine(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

ID: 9342732