Research output: Contribution to journal › Article › peer-review
A Trace Inequality for Solenoidal Charges. / Raita, Bogdan; Spector, Daniel; Stolyarov, Dmitriy .
In: Potential Analysis, 13.09.2022.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - A Trace Inequality for Solenoidal Charges
AU - Raita, Bogdan
AU - Spector, Daniel
AU - Stolyarov, Dmitriy
N1 - Publisher Copyright: © 2022, The Author(s).
PY - 2022/9/13
Y1 - 2022/9/13
N2 - We prove that for α ∈ (d − 1,d), one has the trace inequality∫ℝd|IαF|dν≤C|F|(ℝd)∥ν∥Md−α(ℝd) for all solenoidal vector measures F, i.e., F∈ M b(ℝ d; ℝ d) and divF = 0. Here I α denotes the Riesz potential of order α and ℳ d − α(ℝ d) the Morrey space of (d − α)-dimensional measures on ℝ d.
AB - We prove that for α ∈ (d − 1,d), one has the trace inequality∫ℝd|IαF|dν≤C|F|(ℝd)∥ν∥Md−α(ℝd) for all solenoidal vector measures F, i.e., F∈ M b(ℝ d; ℝ d) and divF = 0. Here I α denotes the Riesz potential of order α and ℳ d − α(ℝ d) the Morrey space of (d − α)-dimensional measures on ℝ d.
KW - Trace inequality
KW - Hausdorff content
KW - Riesz potential
KW - L1 estimates
UR - http://www.scopus.com/inward/record.url?scp=85138080436&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/80f0386d-fac0-344a-840f-5dd60f754734/
U2 - 10.1007/s11118-022-10008-x
DO - 10.1007/s11118-022-10008-x
M3 - Article
JO - Potential Analysis
JF - Potential Analysis
SN - 0926-2601
ER -
ID: 100915093