Abstract: The results of studies of the Gatchina discharge conducted at the Harbin University of Technology (China) have been presented. The Gatchina discharge is mainly used to create an analog of ball lightning in the normal atmosphere of the laboratory. Most studies of this discharge by various groups of scientists are devoted to the study of the first phase of the discharge, when the electric discharge has a galvanic connection with the electrode. This is due to the fact that many researchers consider this phase of the discharge to be decisive for the subsequent long-term existence of an autonomous luminous formation—the second phase of the discharge. In the course of a comparison with similar works, the leader–streamer process occurring on the water surface has been demonstrated more fully and with better resolution. The use of the filter has made it possible to better show the role of leaders, streamers, and the ionization region in the immediate vicinity of the water surface and to clarify some of the processes occurring in the autonomous phase of the discharge. The luminous formation at the autonomous mode showed a longer time of existence in the form of a spherical shape in the wavelength range of 400–500 nm than that when it was being observed in “white” light. With a sharp increase in the amount of introduced substance to the cathode, a new physical effect, which consists in the fact that a complex white formation is formed without losing contact with the electrode (cathode) in the environment of an ordinary atmosphere, has been observed. An unexpectedly small luminous formation with a diameter of 15–17 mm, which was not previously observed in the Gatchina discharge, was obtained for the first time by varying the electrical conductivity and the initial voltage.

Original languageEnglish
Pages (from-to)1058-1071
JournalTechnical Physics
Volume66
Issue number9
DOIs
StatePublished - Sep 2021

    Scopus subject areas

  • Physics and Astronomy (miscellaneous)

ID: 96342492