Research output: Contribution to journal › Article › peer-review
A simple proof of curtis' connectivity theorem for lie powers. / Ivanov, Sergei O.; Romanovskii, Vladislav; Semenov, Andrei.
In: Homology, Homotopy and Applications, Vol. 22, No. 2, 06.05.2020, p. 251-258.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - A simple proof of curtis' connectivity theorem for lie powers
AU - Ivanov, Sergei O.
AU - Romanovskii, Vladislav
AU - Semenov, Andrei
PY - 2020/5/6
Y1 - 2020/5/6
N2 - We give a simple proof of Curtis' theorem: if A• is a k-connected free simplicial abelian group, then Ln(A•) is a k + ⌈ log2 n⌉-connected simplicial abelian group, where Ln is the n-th Lie power functor. In the proof we do not use Curtis' decomposition of Lie powers. Instead we use the Chevalley Eilenberg complex for the free Lie algebra.
AB - We give a simple proof of Curtis' theorem: if A• is a k-connected free simplicial abelian group, then Ln(A•) is a k + ⌈ log2 n⌉-connected simplicial abelian group, where Ln is the n-th Lie power functor. In the proof we do not use Curtis' decomposition of Lie powers. Instead we use the Chevalley Eilenberg complex for the free Lie algebra.
KW - Chevalley eilenberg complex
KW - Con-nectivity
KW - Homotopy theory
KW - Simplicial group
KW - Unstable adams spectral sequence
UR - http://www.scopus.com/inward/record.url?scp=85086245494&partnerID=8YFLogxK
U2 - 10.4310/HHA.2020.V22.N2.A15
DO - 10.4310/HHA.2020.V22.N2.A15
M3 - Article
AN - SCOPUS:85086245494
VL - 22
SP - 251
EP - 258
JO - Homology, Homotopy and Applications
JF - Homology, Homotopy and Applications
SN - 1532-0073
IS - 2
ER -
ID: 62108094