Standard

A quantitative refinement of Rado's theorem. / Shirokov, N. A.

In: Journal of Soviet Mathematics, Vol. 44, No. 6, 03.1989, p. 819-825.

Research output: Contribution to journalArticlepeer-review

Harvard

Shirokov, NA 1989, 'A quantitative refinement of Rado's theorem', Journal of Soviet Mathematics, vol. 44, no. 6, pp. 819-825. https://doi.org/10.1007/BF01463189

APA

Vancouver

Shirokov NA. A quantitative refinement of Rado's theorem. Journal of Soviet Mathematics. 1989 Mar;44(6):819-825. https://doi.org/10.1007/BF01463189

Author

Shirokov, N. A. / A quantitative refinement of Rado's theorem. In: Journal of Soviet Mathematics. 1989 ; Vol. 44, No. 6. pp. 819-825.

BibTeX

@article{21c4fd431351424498850a6afafe7fc1,
title = "A quantitative refinement of Rado's theorem",
abstract = "The fundamental result of the paper is the following. Theorem: Let Γ be a k-quasiconformal Jordan curve and let ⌊ be another Jordan curve (not necessarily quasiconformal). Assume that f maps conformally ext ⌊ onto ext Γ, f(∞)=∞, f′(∞)>0. We assume that there exists a homeomorphism γ between ⌊ and Γ such that[Figure not available: see fulltext.] Then there exist numbers α=α(k)>0 and A=A(k), such that {divides}f(γ(ζ))-ζ{divides}≤ Aεα, ζεΓ.",
author = "Shirokov, {N. A.}",
year = "1989",
month = mar,
doi = "10.1007/BF01463189",
language = "English",
volume = "44",
pages = "819--825",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - A quantitative refinement of Rado's theorem

AU - Shirokov, N. A.

PY - 1989/3

Y1 - 1989/3

N2 - The fundamental result of the paper is the following. Theorem: Let Γ be a k-quasiconformal Jordan curve and let ⌊ be another Jordan curve (not necessarily quasiconformal). Assume that f maps conformally ext ⌊ onto ext Γ, f(∞)=∞, f′(∞)>0. We assume that there exists a homeomorphism γ between ⌊ and Γ such that[Figure not available: see fulltext.] Then there exist numbers α=α(k)>0 and A=A(k), such that {divides}f(γ(ζ))-ζ{divides}≤ Aεα, ζεΓ.

AB - The fundamental result of the paper is the following. Theorem: Let Γ be a k-quasiconformal Jordan curve and let ⌊ be another Jordan curve (not necessarily quasiconformal). Assume that f maps conformally ext ⌊ onto ext Γ, f(∞)=∞, f′(∞)>0. We assume that there exists a homeomorphism γ between ⌊ and Γ such that[Figure not available: see fulltext.] Then there exist numbers α=α(k)>0 and A=A(k), such that {divides}f(γ(ζ))-ζ{divides}≤ Aεα, ζεΓ.

UR - http://www.scopus.com/inward/record.url?scp=34249975369&partnerID=8YFLogxK

U2 - 10.1007/BF01463189

DO - 10.1007/BF01463189

M3 - Article

AN - SCOPUS:34249975369

VL - 44

SP - 819

EP - 825

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 86662728