A quantitative refinement of Rado's theorem. / Shirokov, N. A.
In: Journal of Soviet Mathematics, Vol. 44, No. 6, 03.1989, p. 819-825.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - A quantitative refinement of Rado's theorem
AU - Shirokov, N. A.
PY - 1989/3
Y1 - 1989/3
N2 - The fundamental result of the paper is the following. Theorem: Let Γ be a k-quasiconformal Jordan curve and let ⌊ be another Jordan curve (not necessarily quasiconformal). Assume that f maps conformally ext ⌊ onto ext Γ, f(∞)=∞, f′(∞)>0. We assume that there exists a homeomorphism γ between ⌊ and Γ such that[Figure not available: see fulltext.] Then there exist numbers α=α(k)>0 and A=A(k), such that {divides}f(γ(ζ))-ζ{divides}≤ Aεα, ζεΓ.
AB - The fundamental result of the paper is the following. Theorem: Let Γ be a k-quasiconformal Jordan curve and let ⌊ be another Jordan curve (not necessarily quasiconformal). Assume that f maps conformally ext ⌊ onto ext Γ, f(∞)=∞, f′(∞)>0. We assume that there exists a homeomorphism γ between ⌊ and Γ such that[Figure not available: see fulltext.] Then there exist numbers α=α(k)>0 and A=A(k), such that {divides}f(γ(ζ))-ζ{divides}≤ Aεα, ζεΓ.
UR - http://www.scopus.com/inward/record.url?scp=34249975369&partnerID=8YFLogxK
U2 - 10.1007/BF01463189
DO - 10.1007/BF01463189
M3 - Article
AN - SCOPUS:34249975369
VL - 44
SP - 819
EP - 825
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 6
ER -
ID: 86662728