Standard

A posteriori error estimation by means of the exactly equilibrated fields. / Anufriev, I.E.; Korneev, V.G.; Kostylev, V.S.

Быстрые сеточные методы вычислительной механики сплошной среды. Издательство Санкт-Петербургского университета, 2007. p. 160-221.

Research output: Chapter in Book/Report/Conference proceedingArticle in an anthology

Harvard

Anufriev, IE, Korneev, VG & Kostylev, VS 2007, A posteriori error estimation by means of the exactly equilibrated fields. in Быстрые сеточные методы вычислительной механики сплошной среды. Издательство Санкт-Петербургского университета, pp. 160-221.

APA

Anufriev, I. E., Korneev, V. G., & Kostylev, V. S. (2007). A posteriori error estimation by means of the exactly equilibrated fields. In Быстрые сеточные методы вычислительной механики сплошной среды (pp. 160-221). Издательство Санкт-Петербургского университета.

Vancouver

Anufriev IE, Korneev VG, Kostylev VS. A posteriori error estimation by means of the exactly equilibrated fields. In Быстрые сеточные методы вычислительной механики сплошной среды. Издательство Санкт-Петербургского университета. 2007. p. 160-221

Author

Anufriev, I.E. ; Korneev, V.G. ; Kostylev, V.S. / A posteriori error estimation by means of the exactly equilibrated fields. Быстрые сеточные методы вычислительной механики сплошной среды. Издательство Санкт-Петербургского университета, 2007. pp. 160-221

BibTeX

@inbook{4ef2d9aa49184ceca4590dba61a0653f,
title = "A posteriori error estimation by means of the exactly equilibrated fields",
abstract = "In this paper, we advocate the {"}classical{"}\, approach to the a posteriori error estimation, which for the theory elasticity problems stems from the Lagrange and Castigliano variational principles. In it, the energy of the error of an approximate solution, satisfying geometrical restrictions, is estimated by the energy of the difference of the stress tensor corresponding to the approximate solution and any stress tensor, satisfying the equations of equilibrium. Notwithstanding a popular point of view that the construction of equilibrated stress fields requires considerable computational effort, we show that it can be practically always done for the number of arithmetic operations, which is asymptotically optimal. Numerical experiments show that a posteriori error estimators, based on the use of exactly equilibrated stress fields, provide very good coefficients of effectiveness, which in many cases can be convergent to the unity. At the same time they have linear complexity and are robust.",
keywords = "апостериорные оценки погрешности, метод конечных элементов, быстрые алгоритмы, самоуравновешенные поля напряжений",
author = "I.E. Anufriev and V.G. Korneev and V.S. Kostylev",
year = "2007",
language = "English",
isbn = "978--5-914-10-006-0",
pages = "160--221",
booktitle = "Быстрые сеточные методы вычислительной механики сплошной среды",
publisher = "Издательство Санкт-Петербургского университета",
address = "Russian Federation",

}

RIS

TY - CHAP

T1 - A posteriori error estimation by means of the exactly equilibrated fields

AU - Anufriev, I.E.

AU - Korneev, V.G.

AU - Kostylev, V.S.

PY - 2007

Y1 - 2007

N2 - In this paper, we advocate the "classical"\, approach to the a posteriori error estimation, which for the theory elasticity problems stems from the Lagrange and Castigliano variational principles. In it, the energy of the error of an approximate solution, satisfying geometrical restrictions, is estimated by the energy of the difference of the stress tensor corresponding to the approximate solution and any stress tensor, satisfying the equations of equilibrium. Notwithstanding a popular point of view that the construction of equilibrated stress fields requires considerable computational effort, we show that it can be practically always done for the number of arithmetic operations, which is asymptotically optimal. Numerical experiments show that a posteriori error estimators, based on the use of exactly equilibrated stress fields, provide very good coefficients of effectiveness, which in many cases can be convergent to the unity. At the same time they have linear complexity and are robust.

AB - In this paper, we advocate the "classical"\, approach to the a posteriori error estimation, which for the theory elasticity problems stems from the Lagrange and Castigliano variational principles. In it, the energy of the error of an approximate solution, satisfying geometrical restrictions, is estimated by the energy of the difference of the stress tensor corresponding to the approximate solution and any stress tensor, satisfying the equations of equilibrium. Notwithstanding a popular point of view that the construction of equilibrated stress fields requires considerable computational effort, we show that it can be practically always done for the number of arithmetic operations, which is asymptotically optimal. Numerical experiments show that a posteriori error estimators, based on the use of exactly equilibrated stress fields, provide very good coefficients of effectiveness, which in many cases can be convergent to the unity. At the same time they have linear complexity and are robust.

KW - апостериорные оценки погрешности

KW - метод конечных элементов

KW - быстрые алгоритмы

KW - самоуравновешенные поля напряжений

M3 - Article in an anthology

SN - 978--5-914-10-006-0

SP - 160

EP - 221

BT - Быстрые сеточные методы вычислительной механики сплошной среды

PB - Издательство Санкт-Петербургского университета

ER -

ID: 4589996