Research output: Contribution to journal › Article › peer-review
A novel approach to suppression of oscillations. / Zegzhda, S.; Yushkov, M.; Soltakhanov, Sh.; Naumova, N.; Шугайло, Тимофей Сергеевич.
In: ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 98, No. 5, 05.2018, p. 781 - 788.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - A novel approach to suppression of oscillations
AU - Zegzhda, S.
AU - Yushkov, M.
AU - Soltakhanov, Sh.
AU - Naumova, N.
AU - Шугайло, Тимофей Сергеевич
PY - 2018/5
Y1 - 2018/5
N2 - We propose a novel method of determining the control force that brings a mechanical system with finite degrees of freedom from one phase state into another one in a given time. When a system is brought from an available phase state into a prescribed state of rest we can speak about the oscillation suppression. Horizontal motion of a cart with s mathematical pendula is studied as an example. At first, a control by the Pontryagin maximum principle that minimizes the functional of the squared control force is suggested. This approach results in a nonholonomic constraint of order 2s+4. In order to develop a control we propose to employ the generalized Gauss principle which underlies the theory of motion of nonholonomic systems with high-order constraints. In this case, the motion is more smooth than the Pontryagin maximum principle suggests. In addition, by increasing the order of the generalized Gauss principle (when solving the extended boundary-value problem) one manages to get rid of jumps in the control at the beginning and end of motion which are characteristic for the Pontryagin maximum principle. We also discuss the singular points of solutions that appear when solving the extended boundary-value problems.
AB - We propose a novel method of determining the control force that brings a mechanical system with finite degrees of freedom from one phase state into another one in a given time. When a system is brought from an available phase state into a prescribed state of rest we can speak about the oscillation suppression. Horizontal motion of a cart with s mathematical pendula is studied as an example. At first, a control by the Pontryagin maximum principle that minimizes the functional of the squared control force is suggested. This approach results in a nonholonomic constraint of order 2s+4. In order to develop a control we propose to employ the generalized Gauss principle which underlies the theory of motion of nonholonomic systems with high-order constraints. In this case, the motion is more smooth than the Pontryagin maximum principle suggests. In addition, by increasing the order of the generalized Gauss principle (when solving the extended boundary-value problem) one manages to get rid of jumps in the control at the beginning and end of motion which are characteristic for the Pontryagin maximum principle. We also discuss the singular points of solutions that appear when solving the extended boundary-value problems.
KW - control force
KW - damping of oscillations
KW - generalized Gauss principle
KW - Pontryagin maximum principle
UR - http://www.scopus.com/inward/record.url?scp=85039560152&partnerID=8YFLogxK
U2 - 10.1002/zamm.201700005
DO - 10.1002/zamm.201700005
M3 - Article
VL - 98
SP - 781
EP - 788
JO - ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
JF - ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
SN - 0044-2267
IS - 5
ER -
ID: 11749866