Standard

A Note on the Tangent Bundle and Gauss Functor of Posets and Manifolds. / Mnëv, N.

In: Journal of Mathematical Sciences (United States), Vol. 200, No. 6, 01.01.2014, p. 710-717.

Research output: Contribution to journalArticlepeer-review

Harvard

Mnëv, N 2014, 'A Note on the Tangent Bundle and Gauss Functor of Posets and Manifolds', Journal of Mathematical Sciences (United States), vol. 200, no. 6, pp. 710-717. https://doi.org/10.1007/s10958-014-1962-4

APA

Vancouver

Mnëv N. A Note on the Tangent Bundle and Gauss Functor of Posets and Manifolds. Journal of Mathematical Sciences (United States). 2014 Jan 1;200(6):710-717. https://doi.org/10.1007/s10958-014-1962-4

Author

Mnëv, N. / A Note on the Tangent Bundle and Gauss Functor of Posets and Manifolds. In: Journal of Mathematical Sciences (United States). 2014 ; Vol. 200, No. 6. pp. 710-717.

BibTeX

@article{67e7634e2f4c48b79c0d92ef7a0d7703,
title = "A Note on the Tangent Bundle and Gauss Functor of Posets and Manifolds",
abstract = "We introduce a notion of the tangent bundle of a poset. In the case where the poset is the poset of simplices of a combinatorial manifold, the construction produces the best possible combinatorial model for the geometric compactified tangent bundle. {\textcopyright} 2014 Springer Science+Business Media New York.",
author = "N. Mn{\"e}v",
year = "2014",
month = jan,
day = "1",
doi = "10.1007/s10958-014-1962-4",
language = "English",
volume = "200",
pages = "710--717",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - A Note on the Tangent Bundle and Gauss Functor of Posets and Manifolds

AU - Mnëv, N.

PY - 2014/1/1

Y1 - 2014/1/1

N2 - We introduce a notion of the tangent bundle of a poset. In the case where the poset is the poset of simplices of a combinatorial manifold, the construction produces the best possible combinatorial model for the geometric compactified tangent bundle. © 2014 Springer Science+Business Media New York.

AB - We introduce a notion of the tangent bundle of a poset. In the case where the poset is the poset of simplices of a combinatorial manifold, the construction produces the best possible combinatorial model for the geometric compactified tangent bundle. © 2014 Springer Science+Business Media New York.

UR - http://www.scopus.com/inward/record.url?scp=84904395010&partnerID=8YFLogxK

U2 - 10.1007/s10958-014-1962-4

DO - 10.1007/s10958-014-1962-4

M3 - Article

AN - SCOPUS:84904395010

VL - 200

SP - 710

EP - 717

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 126276966